Assessing and forecasting method of financial efficiency in a free industrial economic zone

Industrial free zones are key to the economic progress of developing countries, making the evaluation and forecast of efficiency in these organisations relevant. This research proposes a three-phase method to evaluate and forecast the financial efficiency of the business profiles of companies belong...

Full description

Autores:
Fontalvo-Herrera, Tomás José
Delahoz-Dominguez, Enrique
Fontalvo-Echavez, Orianna
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12289
Acceso en línea:
https://hdl.handle.net/20.500.12585/12289
https://doi.org/10.1504/IJPQM.2021.115694
Palabra clave:
Decision Making Units;
Data Envelopment Analysis;
DEA Model
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e1b3192e6832623304ae2151e0f3d232
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12289
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Assessing and forecasting method of financial efficiency in a free industrial economic zone
title Assessing and forecasting method of financial efficiency in a free industrial economic zone
spellingShingle Assessing and forecasting method of financial efficiency in a free industrial economic zone
Decision Making Units;
Data Envelopment Analysis;
DEA Model
LEMB
title_short Assessing and forecasting method of financial efficiency in a free industrial economic zone
title_full Assessing and forecasting method of financial efficiency in a free industrial economic zone
title_fullStr Assessing and forecasting method of financial efficiency in a free industrial economic zone
title_full_unstemmed Assessing and forecasting method of financial efficiency in a free industrial economic zone
title_sort Assessing and forecasting method of financial efficiency in a free industrial economic zone
dc.creator.fl_str_mv Fontalvo-Herrera, Tomás José
Delahoz-Dominguez, Enrique
Fontalvo-Echavez, Orianna
dc.contributor.author.none.fl_str_mv Fontalvo-Herrera, Tomás José
Delahoz-Dominguez, Enrique
Fontalvo-Echavez, Orianna
dc.subject.keywords.spa.fl_str_mv Decision Making Units;
Data Envelopment Analysis;
DEA Model
topic Decision Making Units;
Data Envelopment Analysis;
DEA Model
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Industrial free zones are key to the economic progress of developing countries, making the evaluation and forecast of efficiency in these organisations relevant. This research proposes a three-phase method to evaluate and forecast the financial efficiency of the business profiles of companies belonging to the free economic zone of Cartagena - Colombia. The first phase consisted of a cluster analysis to determine representative groups among the companies analysed. In the second phase, financial efficiency is measured for each of the clusters found in phase 1. Finally, in phase 3 a machine learning model is trained and validated to predict the belonging of a company to a category of financial efficiency - cluster. The results show the creation of two business clusters, with an average efficiency of 49.8% and 14.6% respectively. The random forest model has an accuracy of 95% in the validation phase. Copyright © 2021 Inderscience Enterprises Ltd.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:49:18Z
dc.date.available.none.fl_str_mv 2023-07-21T15:49:18Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Herrera, T. J. F., Dominguez, E. D., & Echavez, O. F. (2021). Assessing and forecasting method of financial efficiency in a free industrial economic zone. International Journal of Productivity and Quality Management, 33(2), 253. https://doi.org/10.1504/ijpqm.2021.115694
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12289
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1504/IJPQM.2021.115694
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Herrera, T. J. F., Dominguez, E. D., & Echavez, O. F. (2021). Assessing and forecasting method of financial efficiency in a free industrial economic zone. International Journal of Productivity and Quality Management, 33(2), 253. https://doi.org/10.1504/ijpqm.2021.115694
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12289
https://doi.org/10.1504/IJPQM.2021.115694
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv International Journal of Productivity and Quality Management, 33(2), 253.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/1/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/4/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/5/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
963cf68fdb847dc8724c5b0ff2a4c643
17c0e0abc87778e7277a7a42b18aeeaa
ce1629312f2290601f81acf6dd483d12
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021549762543616
spelling Fontalvo-Herrera, Tomás José05518ec8-a8dd-42ad-a5e3-12bb75b5e7b7Delahoz-Dominguez, Enrique9107e382-6cea-4119-bc15-e873c3e7f5e4Fontalvo-Echavez, Orianna7241c12a-e61c-4ef0-bb31-9c499371e0012023-07-21T15:49:18Z2023-07-21T15:49:18Z20212023Herrera, T. J. F., Dominguez, E. D., & Echavez, O. F. (2021). Assessing and forecasting method of financial efficiency in a free industrial economic zone. International Journal of Productivity and Quality Management, 33(2), 253. https://doi.org/10.1504/ijpqm.2021.115694https://hdl.handle.net/20.500.12585/12289https://doi.org/10.1504/IJPQM.2021.115694Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIndustrial free zones are key to the economic progress of developing countries, making the evaluation and forecast of efficiency in these organisations relevant. This research proposes a three-phase method to evaluate and forecast the financial efficiency of the business profiles of companies belonging to the free economic zone of Cartagena - Colombia. The first phase consisted of a cluster analysis to determine representative groups among the companies analysed. In the second phase, financial efficiency is measured for each of the clusters found in phase 1. Finally, in phase 3 a machine learning model is trained and validated to predict the belonging of a company to a category of financial efficiency - cluster. The results show the creation of two business clusters, with an average efficiency of 49.8% and 14.6% respectively. The random forest model has an accuracy of 95% in the validation phase. Copyright © 2021 Inderscience Enterprises Ltd.17 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2International Journal of Productivity and Quality Management, 33(2), 253.Assessing and forecasting method of financial efficiency in a free industrial economic zoneinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Decision Making Units;Data Envelopment Analysis;DEA ModelLEMBCartagena de IndiasDistributed algorithms for improved associative multilabel document classification considering reoccurrence of features and handling minority classes (2019) International Journal of Business Intelligence and Data Mining, 14 (3), pp. 299-321. Cited 2 times. http://www.inderscience.com/ijbidm doi: 10.1504/IJBIDM.2019.098843Benicio, J., De Mello, J.C.S. Productivity analysis and variable returns of scale: DEA efficiency frontier interpretation (2015) Procedia Computer Science, 55, pp. 341-349. Cited 24 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2015.07.059Bhavani, R., Prakash, V., Chitra, K. An efficient clustering approach for fair semantic web content retrieval via tri-level ontology construction model with hybrid dragonfly algorithm (2019) International Journal of Business Intelligence and Data Mining, 14 (1-2), pp. 62-88. Cited 9 times. http://www.inderscience.com/ijbidm doi: 10.1504/IJBIDM.2019.096836Breiman, L. Random forests (2001) Machine Learning, 45 (1), pp. 5-32. Cited 70128 times. doi: 10.1023/A:1010933404324Cook, W.D., Ramón, N., Ruiz, J.L., Sirvent, I., Zhu, J. DEA-based benchmarking for performance evaluation in pay-for-performance incentive plans (Open Access) (2019) Omega (United Kingdom), 84, pp. 45-54. Cited 44 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description doi: 10.1016/j.omega.2018.04.004De La Hoz, E.J., De La Hoz, E.J., Fontalvo, T.J. Methodology of Machine Learning for the classification and Prediction of users in Virtual Education Environments (2019) Informacion Tecnologica, 30 (1), pp. 247-254. Cited 23 times. https://scielo.conicyt.cl/pdf/infotec/v30n1/0718-0764-infotec-30-01-247.pdf doi: 10.4067/S0718-07642019000100247De La Hoz, E., Fontalvo, T., López, L. Data Envelopment Analysis and Multivariate Calculus to Assess, Classify and Predict the Productive Efficiency and Innovation of Companies in the Chemical sector (2019) Informacion Tecnologica, 30 (5), pp. 213-220. Cited 2 times. https://scielo.conicyt.cl/pdf/infotec/v30n5/0718-0764-infotec-30-05-00213.pdf doi: 10.4067/S0718-07642019000500213Dia, M., Abukari, K., Takouda, P.M., Assaidi, A. Relative efficiency measurement of Canadian mining companies (2019) International Journal of Applied Management Science, 11 (3), pp. 224-242. Cited 4 times. http://www.inderscience.com/ijams doi: 10.1504/IJAMS.2019.101002Herrera, T.F., De la Hoz Granadillo, E., Vergara, J.C. Application of discriminant analysis to evaluate the improvement of financial indicators in the food sector companies Barranquilla-Colombia (Open Access) (2012) Ingeniare, 20 (3), pp. 320-330. Cited 12 times. http://www.scielo.cl/pdf/ingeniare/v20n3/art06.pdfFontalvo, T.J., De La Hoz, E.J., Morelos, J. Combined method of Conglomerate Analysis and Multivariate Discriminant Analysis to identify and evaluate financial efficiency profiles in exporting companies (2018) Informacion Tecnologica, 29 (5), pp. 227-234. Cited 2 times. https://scielo.conicyt.cl/pdf/infotec/v29n5/0718-0764-infotec-29-05-00227.pdf doi: 10.4067/S0718-07642018000500227Fontalvo, T.J., De La Hoz, E.J., Olivos, S. Methodology of data envelopment analysis (DEA) - GLMNEt for assessment and forecasting of financial efficiency in a free trade zone - Colombia (Open Access) (2019) Informacion Tecnologica, 30 (5), pp. 263-270. Cited 6 times. https://scielo.conicyt.cl/pdf/infotec/v30n5/0718-0764-infotec-30-05-00263.pdf doi: 10.4067/S0718-07642019000500263Garg, A., Goyal, D.p. Sustained business competitive advantage with data analytics (2019) International Journal of Business and Data Analytics, 1 (1), pp. 4-15. Cited 4 times. (accessed 10 September 2019)Ghiyasi, M. Efficiency improvement and resource estimation: A tradeoff analysis (2018) International Journal of Productivity and Quality Management, 25 (2), pp. 151-169. Cited 10 times. http://www.inderscience.com/ijpqm doi: 10.1504/IJPQM.2018.094758De La Hoz Granadillo, E., Gómez, J.M., Herrera, T.J.F. Methodology with multivariate calculation to define and evaluate financial productivity profiles of the chemical sector in Colombia (Open Access) (2019) International Journal of Productivity and Quality Management, 27 (2), pp. 144-160. Cited 5 times. http://www.inderscience.com/ijpqm doi: 10.1504/IJPQM.2019.100141Herrera, T.J.F. Application of discriminant analysis to assess productivity as a result from the BASC certification in Cartagena companies (Open Access) (2014) Contaduria y Administracion, 59 (1), pp. 43-62. Cited 7 times. http://www.journals.elsevier.com/contaduria-y-administracion/Kaufman, L., Rousseeuw, P.J. (2009) Finding Groups in Data: An Introduction to Cluster Analysis, 344. Cited 12406 times. John Wiley & SonsKhodabandehlou, S. Designing an e-commerce recommender system based on collaborative filtering using a data mining approach (2019) International Journal of Business Information Systems, 31 (4), pp. 455-478. Cited 6 times. http://www.inderscience.com/ijbis doi: 10.1504/IJBIS.2019.101582Raj Kumar, V., Suganthi, L. Relative efficiency of social CRM software: A hybrid fuzzy AHP/DEA approach (Open Access) (2019) International Journal of Business Information Systems, 31 (1), pp. 27-44. Cited 2 times. http://www.inderscience.com/ijbis doi: 10.1504/IJBIS.2019.099525Lin, W.-Y., Hu, Y.-H., Tsai, C.-F. Machine learning in financial crisis prediction: A survey (2012) IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42 (4), art. no. 6069610, pp. 421-436. Cited 214 times. doi: 10.1109/TSMCC.2011.2170420Mahjoub, R.H., Afsar, A. A hybrid model for customer credit scoring in stock brokerages using data mining approach (2019) International Journal of Business Information Systems, 31 (2), pp. 195-214. Cited 2 times. http://www.inderscience.com/ijbis doi: 10.1504/IJBIS.2019.100279Mardani, A., Zavadskas, E.K., Streimikiene, D., Jusoh, A., Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency (2017) Renewable and Sustainable Energy Reviews, 70, pp. 1298-1322. Cited 387 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.12.030Menardi, G. Density-based Silhouette diagnostics for clustering methods (Open Access) (2011) Statistics and Computing, 21 (3), pp. 295-308. Cited 25 times. doi: 10.1007/s11222-010-9169-0Nazir, A. A critique of imbalanced data learning approaches for big data analytics (2019) International Journal of Business Intelligence and Data Mining, 14 (4), pp. 419-457. Cited 5 times. http://www.inderscience.com/ijbidm doi: 10.1504/IJBIDM.2019.099961Ohsato, S., Takahashi, M. Management Efficiency in Japanese Regional Banks: a network DEA (2015) Procedia - Social and Behavioral Sciences, Contemporary Issues in Management and Social Science Research, 172, pp. 511-518. Cited 32 times. [online] (accessed 29 July 2019)Panjehfouladgaran, H., Shirouyehzad, H. Classification of critical success factors for reverse logistics implementation based on importance-performance analysis (2018) International Journal of Productivity and Quality Management, 25 (2), pp. 139-150. Cited 8 times. http://www.inderscience.com/ijpqm doi: 10.1504/IJPQM.2018.094757Pawsey, N., Ananda, J., Hoque, Z. Rationality, accounting and benchmarking water businesses: An analysis of measurement challenges (2018) International Journal of Public Sector Management, 31 (3), pp. 290-315. Cited 8 times. http://www.emeraldinsight.com/info/journals/ijpsm/ijpsm.jsp doi: 10.1108/IJPSM-04-2017-0124Sinuany-Stern, Z., Mehrez, A., Hadad, Y. An AHP/DEA methodology for ranking decision making units (2000) International Transactions in Operational Research, 7 (2), pp. 109-124. Cited 237 times. doi: 10.1111/j.1475-3995.2000.tb00189.xSmitha, J.A., Rajkumar, N. Efficient moving vehicle detection for intelligent traffic surveillance system using optimal probabilistic neural network (2019) International Journal of Business Intelligence and Data Mining, 15 (1), pp. 22-48. Cited 2 times. http://www.inderscience.com/ijbidm doi: 10.1504/IJBIDM.2019.100466Sreenivasan, S., Sundaram, M. A probabilistic model for predicting service level adherence of application support projects (2018) International Journal of Productivity and Quality Management, 25 (3), pp. 305-330. Cited 2 times. http://www.inderscience.com/ijpqm doi: 10.1504/IJPQM.2018.095648Nikhila Varma, G., Padma, K. Forecasting agricultural commodity pricing using neural network-based approach (2019) International Journal of Business Information Systems, 31 (4), pp. 517-529. Cited 2 times. http://www.inderscience.com/ijbis doi: 10.1504/IJBIS.2019.101584http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdfScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdfapplication/pdf171603https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/1/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf963cf68fdb847dc8724c5b0ff2a4c643MD51TEXTScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdf.txtScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdf.txtExtracted texttext/plain2374https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/4/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf.txt17c0e0abc87778e7277a7a42b18aeeaaMD54THUMBNAILScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdf.jpgScopus - Document details - Assessing and forecasting method of financial efficiency in a free industrial economic zone.pdf.jpgGenerated Thumbnailimage/jpeg5899https://repositorio.utb.edu.co/bitstream/20.500.12585/12289/5/Scopus%20-%20Document%20details%20-%20Assessing%20and%20forecasting%20method%20of%20financial%20efficiency%20in%20a%20free%20industrial%20economic%20zone.pdf.jpgce1629312f2290601f81acf6dd483d12MD5520.500.12585/12289oai:repositorio.utb.edu.co:20.500.12585/122892023-07-22 00:17:56.696Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=