Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors

The development of techniques for synthesizing graphene and its derivatives, as well as currently available nanocomposite fabrication techniques, coupled with the diverse applications of strain and pressure sensors, has made this field of growing interest in the last decade. This article provides an...

Full description

Autores:
Peña-Consuegra, Jorge
Pagnola, Marcelo R.
Useche, Jairo
Madhukar, Pagidi
Saccone, Fabio D.
Marrugo, Andrés G.
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12381
Acceso en línea:
https://hdl.handle.net/20.500.12585/12381
Palabra clave:
Strain Sensor;
Flexible Electronics;
Sensor
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e0c6ffa0c3abc4ba29d2f06a8434bd8c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12381
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
title Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
spellingShingle Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
Strain Sensor;
Flexible Electronics;
Sensor
LEMB
title_short Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
title_full Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
title_fullStr Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
title_full_unstemmed Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
title_sort Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors
dc.creator.fl_str_mv Peña-Consuegra, Jorge
Pagnola, Marcelo R.
Useche, Jairo
Madhukar, Pagidi
Saccone, Fabio D.
Marrugo, Andrés G.
dc.contributor.author.none.fl_str_mv Peña-Consuegra, Jorge
Pagnola, Marcelo R.
Useche, Jairo
Madhukar, Pagidi
Saccone, Fabio D.
Marrugo, Andrés G.
dc.subject.keywords.spa.fl_str_mv Strain Sensor;
Flexible Electronics;
Sensor
topic Strain Sensor;
Flexible Electronics;
Sensor
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The development of techniques for synthesizing graphene and its derivatives, as well as currently available nanocomposite fabrication techniques, coupled with the diverse applications of strain and pressure sensors, has made this field of growing interest in the last decade. This article provides an overview of conventional strain sensor manufacturing techniques, such as in situ polymerization, solution blending, and electrospinning. It also covers various additive manufacturing techniques such as vat-photopolymerization, material extrusion, material jetting, sheet lamination, and the most common graphene synthesis techniques like chemical-based, vapor deposition, exfoliation, and mechanical-based methods. The review is also completed with a discussion about the sensing mechanisms of strain sensors, considering the various process parameters to characterize and compare the performance of a strain sensor. Finally, we examine several key aspects of the sensor’s component materials, the type of sensing mechanism, and the appropriate manufacturing process. © 2022, The Minerals, Metals & Materials Society.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:48:35Z
dc.date.available.none.fl_str_mv 2023-07-21T20:48:35Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Peña-Consuegra, J., Pagnola, M. R., Useche, J., Madhukar, P., Saccone, F. D., & Marrugo, A. G. (2023). Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors. JOM, 75(3), 631-645.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12381
dc.identifier.doi.none.fl_str_mv 10.1007/s11837-022-05550-3
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Peña-Consuegra, J., Pagnola, M. R., Useche, J., Madhukar, P., Saccone, F. D., & Marrugo, A. G. (2023). Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors. JOM, 75(3), 631-645.
10.1007/s11837-022-05550-3
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12381
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv JOM
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/1/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/4/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/5/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
740b0c92bae1e7ab2323ee49cc6c15f1
e20ad307a1c5f3f25af9304a7a7c86b6
af814ce3a9574f7ddaaef045ee97d833
523d6f11f4b56abd7807507ba98da493
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397595255504896
spelling Peña-Consuegra, Jorgec5c44748-9971-496b-bd1c-62c32196e0c8Pagnola, Marcelo R.79edbb73-3f73-4990-a148-98b9c6937c2cUseche, Jairofa4e9db4-a773-4bc3-a3bb-c992f7e97f02Madhukar, Pagidicf255d06-c0cb-4b6d-9d21-976c19aa6b3cSaccone, Fabio D.7810d8d8-eaa1-4ba7-9ae1-86d13803a8e4Marrugo, Andrés G.00746131-f46c-4d8c-9c02-514385d7b36e2023-07-21T20:48:35Z2023-07-21T20:48:35Z20232023Peña-Consuegra, J., Pagnola, M. R., Useche, J., Madhukar, P., Saccone, F. D., & Marrugo, A. G. (2023). Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors. JOM, 75(3), 631-645.https://hdl.handle.net/20.500.12585/1238110.1007/s11837-022-05550-3Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe development of techniques for synthesizing graphene and its derivatives, as well as currently available nanocomposite fabrication techniques, coupled with the diverse applications of strain and pressure sensors, has made this field of growing interest in the last decade. This article provides an overview of conventional strain sensor manufacturing techniques, such as in situ polymerization, solution blending, and electrospinning. It also covers various additive manufacturing techniques such as vat-photopolymerization, material extrusion, material jetting, sheet lamination, and the most common graphene synthesis techniques like chemical-based, vapor deposition, exfoliation, and mechanical-based methods. The review is also completed with a discussion about the sensing mechanisms of strain sensors, considering the various process parameters to characterize and compare the performance of a strain sensor. Finally, we examine several key aspects of the sensor’s component materials, the type of sensing mechanism, and the appropriate manufacturing process. © 2022, The Minerals, Metals & Materials Society.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2JOMManufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Strain Sensor;Flexible Electronics;SensorLEMBCartagena de IndiasPark, J., You, I., Shin, S., Jeong, U. Material approaches to stretchable strain sensors (2015) ChemPhysChem, 16 (6), pp. 1155-1163. Cited 153 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-7641 doi: 10.1002/cphc.201402810Kasar, A.K., Xiong, G., Menezes, P.L. Graphene-Reinforced Metal and Polymer Matrix Composites (2018) JOM, 70 (6), pp. 829-836. Cited 35 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-018-2823-2Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., Razal, J.M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications (2019) Materials Horizons, 6 (2), pp. 219-249. Cited 240 times. http://pubs.rsc.org/en/journals/journal/mh doi: 10.1039/c8mh01062eSony, S., Laventure, S., Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring (2019) Structural Control and Health Monitoring, 26 (3), art. no. e2321. Cited 289 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1545-2263 doi: 10.1002/stc.2321Sanchez, V., Walsh, C.J., Wood, R.J. Textile Technology for Soft Robotic and Autonomous Garments (2021) Advanced Functional Materials, 31 (6), art. no. 2008278. Cited 106 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1616-3028 doi: 10.1002/adfm.202008278Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., (...), Guo, Z. Electrically conductive polymer composites for smart flexible strain sensors: a critical review (2018) Journal of Materials Chemistry C, 6 (45), pp. 12121-12141. Cited 461 times. http://pubs.rsc.org/en/journals/journal/tc doi: 10.1039/C8TC04079FXu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., Liu, R. Recent developments for flexible pressure sensors: A review (2018) Micromachines, 9 (11), art. no. 580. Cited 173 times. https://www.mdpi.com/2072-666X/9/11/580/pdf doi: 10.3390/mi9110580Mehmood, A., Mubarak, N.M., Khalid, M., Walvekar, R., Abdullah, E.C., Siddiqui, M.T.H., Baloch, H.A., (...), Mazari, S. Graphene based nanomaterials for strain sensor application - A review (2020) Journal of Environmental Chemical Engineering, 8 (3), art. no. 103743. Cited 104 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.103743Mohammed, M.K., Al-Nafiey, A., Al-Dahash, G. Manufacturing graphene and graphene-based nanocomposite for piezoelectric pressure sensor application: A review (2021) Nano Biomedicine and Engineering, 13 (1), pp. 27-35. Cited 5 times. http://nanobe.org/Assets/userfiles/sys_eb538c1c-65ff-4e82-8e6a-a1ef01127fed/files/13(1)_p027-035%20(Musaab%20Khudhur%20Mohammed).pdf doi: 10.5101/nbe.v13i1.p27-35Nag, A., Mitra, A., Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review (2018) Sensors and Actuators, A: Physical, 270, pp. 177-194. Cited 415 times. doi: 10.1016/j.sna.2017.12.028Asyraf, M., Anwar, M., Sheng, L.M., Danquah, M.K. Recent Development of Nanomaterial-Doped Conductive Polymers (2017) JOM, 69 (12), pp. 2515-2523. Cited 15 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-017-2628-8Zhu, Y., Cai, H., Ding, H., Pan, N., Wang, X. Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane (Open Access) (2019) ACS Applied Materials and Interfaces. Cited 74 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b17085Liu, H., Gao, H., Hu, G. Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method (2019) Composites Part B: Engineering, 171, pp. 138-145. Cited 56 times. https://www.journals.elsevier.com/composites-part-b-engineering doi: 10.1016/j.compositesb.2019.04.032Pagnola, M.R., Morales, F., Tancredi, P., Socolovsky, L.M. Radial Distribution Function Analysis and Molecular Simulation of Graphene Nanoplatelets Obtained by Mechanical Ball Milling (2021) JOM, 73 (8), pp. 2471-2478. Cited 8 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-020-04499-5Montazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A.S., Hoorfar, M. Graphene-Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications (2019) Small, 15 (17), art. no. 1804991. Cited 78 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1613-6829 doi: 10.1002/smll.201804991Li, Y., He, T., Shi, L., Wang, R., Sun, J. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts (2020) ACS Applied Materials and Interfaces, 12 (15), pp. 17691-17698. Cited 58 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.9b21921Kumar, V., Alam, M.N., Manikkavel, A., Song, M., Lee, D.-J., Park, S.-S. Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review (2021) Polymers, 13 (14), art. no. 2322. Cited 42 times. https://www.mdpi.com/2073-4360/13/14/2322/pdf doi: 10.3390/polym13142322Zhao, L., Qiang, F., Dai, S.-W., Shen, S.-C., Huang, Y.-Z., Huang, N.-J., Zhang, G.-D., (...), Tang, L.-C. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors (2019) Nanoscale, 11 (21), pp. 10229-10238. Cited 98 times. http://pubs.rsc.org/en/journals/journal/nr doi: 10.1039/c9nr02672jZhao, L., Qiang, F., Dai, S.-W., Shen, S.-C., Huang, Y.-Z., Huang, N.-J., Zhang, G.-D., (...), Tang, L.-C. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors (2019) Nanoscale, 11 (21), pp. 10229-10238. Cited 98 times. http://pubs.rsc.org/en/journals/journal/nr doi: 10.1039/c9nr02672jZhu, Y., Cai, H., Ding, H., Pan, N., Wang, X. Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane (2019) ACS Applied Materials and Interfaces. Cited 74 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b17085Niu, D., Jiang, W., Ye, G., Wang, K., Yin, L., Shi, Y., Chen, B., (...), Liu, H. Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection (2018) Materials Research Bulletin, 102, pp. 92-99. Cited 70 times. http://www.sciencedirect.com/science/journal/00255408 doi: 10.1016/j.materresbull.2018.02.005Luo, S., Yang, J., Song, X., Zhou, X., Yu, L., Sun, T., Yu, C., (...), Wei, D. Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode (2018) Solid-State Electronics, 145, pp. 29-33. Cited 46 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/103/description#description doi: 10.1016/j.sse.2018.04.003Wang, Z., Zhang, Q., Yue, Y., Xu, J., Xu, W., Sun, X., Chen, Y., (...), Liu, Y. 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity (2019) Nanotechnology, 30 (34), art. no. 345501. Cited 38 times. https://iopscience.iop.org/article/10.1088/1361-6528/ab1287/pdf doi: 10.1088/1361-6528/ab1287Jeong, S.-Y., Ma, Y.-W., Lee, J.-U., Je, G.-J., Shin, B.-S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser (2019) Sensors (Switzerland), 19 (22), art. no. 4867. Cited 32 times. https://www.mdpi.com/1424-8220/19/22/4867/pdf doi: 10.3390/s19224867Chen, J., Zhu, Y., Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer (Open Access) (2020) Composites Science and Technology, 186, art. no. 107938. Cited 138 times. http://www.journals.elsevier.com/composites-science-and-technology/ doi: 10.1016/j.compscitech.2019.107938Kumpika, T., Kantarak, E., Sriboonruang, A., Sroila, W., Tippo, P., Thongpan, W., Pooseekheaw, P., (...), Singjai, P. Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite (Open Access) (2020) Materials Research Express, 7 (3), art. no. 035006. Cited 7 times. https://iopscience.iop.org/article/10.1088/2053-1591/ab748d/pdf doi: 10.1088/2053-1591/ab748dO'Driscoll, D.P., McMahon, S., Garcia, J., Biccai, S., Gabbett, C., Kelly, A.G., Barwich, S., (...), Coleman, J.N. Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors (2021) Small, 17 (23), art. no. 2006542. Cited 13 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1613-6829 doi: 10.1002/smll.202006542Meng, Q., Liu, Z., Han, S., Xu, L., Araby, S., Cai, R., Zhao, Y., (...), Liu, T. A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film (2019) Journal of Materials Science, 54 (15), pp. 10856-10870. Cited 45 times. doi: 10.1007/s10853-019-03650-1Lu, S., Tian, C., Wang, X., Chen, D., Ma, K., Leng, J., Zhang, L. Health monitoring for composite materials with high linear and sensitivity GnPs/epoxy flexible strain sensors (Open Access) (2017) Sensors and Actuators, A: Physical, 267, pp. 409-416. Cited 22 times. doi: 10.1016/j.sna.2017.10.047Li, R., Zhou, Q., Bi, Y., Cao, S., Xia, X., Yang, A., Li, S., (...), Xiao, X. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches (Open Access) (2021) Sensors and Actuators, A: Physical, 321, art. no. 112425. Cited 73 times. https://www.journals.elsevier.com/sensors-and-actuators-a-physical doi: 10.1016/j.sna.2020.112425He, Z., Chen, W., Liang, B., Liu, C., Yang, L., Lu, D., Mo, Z., (...), Gui, X. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks (Open Access) (2018) ACS Applied Materials and Interfaces, 10 (15), pp. 12816-12823. Cited 200 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b01050Avilés, F., Oliva-Avilés, A.I., Cen-Puc, M. Piezoresistivity, Strain, and Damage Self-Sensing of Polymer Composites Filled with Carbon Nanostructures (Open Access) (2018) Advanced Engineering Materials, 20 (7), art. no. 1701159. Cited 107 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1527-2648 doi: 10.1002/adem.201701159Boland, C.S., Khan, U., Ryan, G., Barwich, S., Charifou, R., Harvey, A., Backes, C., (...), Coleman, J.N. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites (2016) Science, 354 (6317), pp. 1257-1260. Cited 613 times. http://science.sciencemag.org/content/sci/354/6317/1257.full.pdf doi: 10.1126/science.aag2879Hébert, M., Huissoon, J.P., Ren, C.L. A silicone-based soft matrix nanocomposite strain-like sensor fabricated using Graphene and Silly Putty® (2020) Sensors and Actuators, A: Physical, 305, art. no. 111917. Cited 4 times. https://www.journals.elsevier.com/sensors-and-actuators-a-physical doi: 10.1016/j.sna.2020.111917Pena-Consuegra, J., Jairo, U.V., Pagnola, M. Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring (2020) 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings, art. no. 9290292. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9290170 ISBN: 978-172819496-7 doi: 10.1109/CIIMA50553.2020.9290292He, J., Zhang, Y., Zhou, R., Meng, L., Pan, C., Mai, W., Chen, T. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects (2020) Journal of Materiomics, 6 (1), pp. 86-101. Cited 83 times. https://www.journals.elsevier.com/journal-of-materiomics/ doi: 10.1016/j.jmat.2020.01.009Jin, X., Feng, C., Ponnamma, D., Yi, Z., Parameswaranpillai, J., Thomas, S., Salim, N.V. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics (2020) Chemical Engineering Journal Advances, 4, art. no. 100034. Cited 37 times. https://www.journals.elsevier.com/chemical-engineering-journal-advances doi: 10.1016/j.ceja.2020.100034Sankar, V., Sankar, V., Nambi, A., Bhat, V.N., Sethy, D., Balasubramaniam, K., Das, S., (...), Sundara, R. Waterproof Flexible Polymer-Functionalized Graphene-Based Piezoresistive Strain Sensor for Structural Health Monitoring and Wearable Devices (2020) ACS Omega, 5 (22), pp. 12682-12691. Cited 27 times. pubs.acs.org/journal/acsodf doi: 10.1021/acsomega.9b04205Wang, X., Li, J., Song, H., Huang, H., Gou, J. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity (Open Access) (2018) ACS Applied Materials and Interfaces, 10 (8), pp. 7371-7380. Cited 171 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.7b17766Gao, Y., Fang, X., Tan, J., Lu, T., Pan, L., Xuan, F. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites (2018) Nanotechnology, 29 (23), art. no. 235501. Cited 66 times. http://iopscience.iop.org/article/10.1088/1361-6528/aab888/pdf doi: 10.1088/1361-6528/aab888Wang, Y., Wang, Y., Yang, Y. Graphene–Polymer Nanocomposite-Based Redox-Induced Electricity for Flexible Self-Powered Strain Sensors (Open Access) (2018) Advanced Energy Materials, 8 (22), art. no. 1800961. Cited 88 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1614-6840 doi: 10.1002/aenm.201800961Riyajuddin, S., Kumar, S., Gaur, S.P., Sud, A., Maruyama, T., Ali, M.E., Ghosh, K. Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure (2020) Nanotechnology, 31 (29), art. no. 295501. Cited 28 times. https://iopscience.iop.org/article/10.1088/1361-6528/ab7b88 doi: 10.1088/1361-6528/ab7b88Qiu, A., Jia, Q., Yu, H., Oh, J.-A., Li, D., Hsu, H.-Y., Kawashima, N., (...), Ma, J. Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements (2021) Materials Today Communications, 26, art. no. 102023. Cited 11 times. http://www.journals.elsevier.com/materials-today-communications/ doi: 10.1016/j.mtcomm.2021.102023Randviir, E.P., Brownson, D.A.C., Banks, C.E. A decade of graphene research: Production, applications and outlook (Open Access) (2014) Materials Today, 17 (9), pp. 426-432. Cited 442 times. http://www.journals.elsevier.com/materials-today/ doi: 10.1016/j.mattod.2014.06.001Song, Y., Luo, Y., Zhu, C., Li, H., Du, D., Lin, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials (Open Access) (2016) Biosensors and Bioelectronics, 76, pp. 195-212. Cited 308 times. www.elsevier.com/locate/bios doi: 10.1016/j.bios.2015.07.002Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M., Inamuddin Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review (2018) Journal of Industrial and Engineering Chemistry, 66, pp. 29-44. Cited 265 times. http:www.sciencedirect.com/science/journal/1226086X doi: 10.1016/j.jiec.2018.05.028Nie, M., Xia, Y.-H., Yang, H.-S. A flexible and highly sensitive graphene-based strain sensor for structural health monitoring (2019) Cluster Computing, 22, pp. 8217-8224. Cited 38 times. https://link.springer.com/journal/volumesAndIssues/10586 doi: 10.1007/s10586-018-1727-9Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., (...), Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite (2008) Nature Nanotechnology, 3 (9), pp. 563-568. Cited 5282 times. doi: 10.1038/nnano.2008.215Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., (...), Lee, Y.H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance (Open Access) (2009) Advanced Functional Materials, 19 (12), pp. 1987-1992. Cited 2029 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/122335632/PDFSTART doi: 10.1002/adfm.200900167Zhou, X., Zheng, J., Wu, H., Yang, H., Zhang, J., Guo, S. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene (Open Access) (2011) Journal of Physical Chemistry C, 115 (24), pp. 11957-11961. Cited 311 times. doi: 10.1021/jp202575jPham, V.H., Cuong, T.V., Nguyen-Phan, T.-D., Pham, H.D., Kim, E.J., Hur, S.H., Shin, E.W., (...), Chung, J.S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents (2010) Chemical Communications, 46 (24), pp. 4375-4377. Cited 162 times. http://pubs.rsc.org/en/journals/journal/cc doi: 10.1039/c0cc00363hZhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. Reduction of graphene oxide vial-ascorbic acid (Open Access) (2010) Chemical Communications, 46 (7), pp. 1112-1114. Cited 2066 times. http://pubs.rsc.org/en/journals/journal/cc doi: 10.1039/b917705aZhu, C., Guo, S., Fang, Y., Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets (2010) ACS Nano, 4 (4), pp. 2429-2437. Cited 1292 times. doi: 10.1021/nn1002387Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation (Open Access) (2008) Advanced Materials, 20 (23), pp. 4490-4493. Cited 1614 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/121429860/PDFSTART doi: 10.1002/adma.200801306Guoxiu, W., Juan, Y., Jinsoo, P., Xinglong, G., Bei, W., Hao, L., Jane, Y. Facile synthesis and characterization of graphene nanosheets (2008) Journal of Physical Chemistry C, 112 (22), pp. 8192-8195. Cited 1797 times. doi: 10.1021/jp710931hAmarnath, C.A., Hong, C.E., Kim, N.H., Ku, B.-C., Kuila, T., Lee, J.H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent (2011) Carbon, 49 (11), pp. 3497-3502. Cited 196 times. doi: 10.1016/j.carbon.2011.04.048Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T. Chemically active reduced graphene oxide with tunable C/O ratios (2011) ACS Nano, 5 (6), pp. 4380-4391. Cited 320 times. doi: 10.1021/nn1030725Hansora, D.P., Shimpi, N.G., Mishra, S. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications (2015) JOM, 67 (12), pp. 2855-2868. Cited 72 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-015-1522-5http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINALScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdfScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdfapplication/pdf165768https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/1/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf740b0c92bae1e7ab2323ee49cc6c15f1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdf.txtScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdf.txtExtracted texttext/plain2368https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/4/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf.txtaf814ce3a9574f7ddaaef045ee97d833MD54THUMBNAILScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdf.jpgScopus - Document details - Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors.pdf.jpgGenerated Thumbnailimage/jpeg5868https://repositorio.utb.edu.co/bitstream/20.500.12585/12381/5/Scopus%20-%20Document%20details%20-%20Manufacturing%20and%20Measuring%20Techniques%20for%20Graphene-Silicone-Based%20Strain%20Sensors.pdf.jpg523d6f11f4b56abd7807507ba98da493MD5520.500.12585/12381oai:repositorio.utb.edu.co:20.500.12585/123812023-07-22 00:18:12.711Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=