A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors

This study analyzes the numerical convergence and processing time required by several classical and new solution methods proposed in the literature to solve the power-flow problem (PF) in direct-current (DC) networks considering radial and mesh topologies. Three classical numerical methods were stud...

Full description

Autores:
Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Gil-González, Walter
Perea-Moreno, Alberto-Jesus
Perea-Moreno, Miguel-Angel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9940
Acceso en línea:
https://hdl.handle.net/20.500.12585/9940
https://www.mdpi.com/2079-9292/9/12/2062
Palabra clave:
Direct-current network
Power-flow analysi
Distribution networks
Numerical methods
Literature review
Processing time
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e0b04f8316640fadb8771ebb888e72bd
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9940
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
title A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
spellingShingle A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
Direct-current network
Power-flow analysi
Distribution networks
Numerical methods
Literature review
Processing time
LEMB
title_short A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
title_full A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
title_fullStr A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
title_full_unstemmed A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
title_sort A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
dc.creator.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Gil-González, Walter
Perea-Moreno, Alberto-Jesus
Perea-Moreno, Miguel-Angel
dc.contributor.author.none.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Gil-González, Walter
Perea-Moreno, Alberto-Jesus
Perea-Moreno, Miguel-Angel
dc.subject.keywords.spa.fl_str_mv Direct-current network
Power-flow analysi
Distribution networks
Numerical methods
Literature review
Processing time
topic Direct-current network
Power-flow analysi
Distribution networks
Numerical methods
Literature review
Processing time
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This study analyzes the numerical convergence and processing time required by several classical and new solution methods proposed in the literature to solve the power-flow problem (PF) in direct-current (DC) networks considering radial and mesh topologies. Three classical numerical methods were studied: Gauss–Jacobi, Gauss–Seidel, and Newton–Raphson. In addition, two unconventional methods were selected. They are iterative and allow solving the DC PF in radial and mesh configurations. The first method uses a Taylor series expansion and a set of decoupling equations to linearize around the desired operating point. The second method manipulates the set of non-linear equations of the DC PF to transform it into a conventional fixed-point form. Moreover, this method is used to develop a successive approximation methodology. For the particular case of radial topology, three methods based on triangular matrix formulation, graph theory, and scanning algorithms were analyzed. The main objective of this study was to identify the methods with the best performance in terms of quality of solution (i.e., numerical convergence) and processing time to solve the DC power flow in mesh and radial distribution networks. We aimed at offering to the reader a set of PF methodologies to analyze electrical DC grids. The PF performance of the analyzed solution methods was evaluated through six test feeders; all of them were employed in prior studies for the same application. The simulation results show the adequate performance of the power-flow methods reviewed in this study, and they permit the selection of the best solution method for radial and mesh structures.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-03
dc.date.accessioned.none.fl_str_mv 2021-02-08T14:53:17Z
dc.date.available.none.fl_str_mv 2021-02-08T14:53:17Z
dc.date.submitted.none.fl_str_mv 2021-02-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Grisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.-J.; Perea-Moreno, M.-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. https://doi.org/10.3390/electronics9122062
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9940
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2079-9292/9/12/2062
dc.identifier.doi.none.fl_str_mv 10.3390/electronics9122062
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Grisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.-J.; Perea-Moreno, M.-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. https://doi.org/10.3390/electronics9122062
10.3390/electronics9122062
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9940
https://www.mdpi.com/2079-9292/9/12/2062
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics 2020, 9(12), 2062
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/1/107.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/4/107.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/5/107.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
2c1eb8a105cb3516ae0a96d585c8a625
5fc6321836b6e4dc39e86a21acd51593
9d5a4c8e5e1b38c6922965ae4ab8d793
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021739447844864
spelling Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter1747fed9-7818-4c10-a283-efb3c73ebb27Perea-Moreno, Alberto-Jesuse78da438-8ed5-40ab-a12c-74e84e6d691bPerea-Moreno, Miguel-Angeld9531a58-ba07-42c6-9379-79326fc504222021-02-08T14:53:17Z2021-02-08T14:53:17Z2020-12-032021-02-05Grisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.-J.; Perea-Moreno, M.-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. https://doi.org/10.3390/electronics9122062https://hdl.handle.net/20.500.12585/9940https://www.mdpi.com/2079-9292/9/12/206210.3390/electronics9122062Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis study analyzes the numerical convergence and processing time required by several classical and new solution methods proposed in the literature to solve the power-flow problem (PF) in direct-current (DC) networks considering radial and mesh topologies. Three classical numerical methods were studied: Gauss–Jacobi, Gauss–Seidel, and Newton–Raphson. In addition, two unconventional methods were selected. They are iterative and allow solving the DC PF in radial and mesh configurations. The first method uses a Taylor series expansion and a set of decoupling equations to linearize around the desired operating point. The second method manipulates the set of non-linear equations of the DC PF to transform it into a conventional fixed-point form. Moreover, this method is used to develop a successive approximation methodology. For the particular case of radial topology, three methods based on triangular matrix formulation, graph theory, and scanning algorithms were analyzed. The main objective of this study was to identify the methods with the best performance in terms of quality of solution (i.e., numerical convergence) and processing time to solve the DC power flow in mesh and radial distribution networks. We aimed at offering to the reader a set of PF methodologies to analyze electrical DC grids. The PF performance of the analyzed solution methods was evaluated through six test feeders; all of them were employed in prior studies for the same application. The simulation results show the adequate performance of the power-flow methods reviewed in this study, and they permit the selection of the best solution method for radial and mesh structures.20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics 2020, 9(12), 2062A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Direct-current networkPower-flow analysiDistribution networksNumerical methodsLiterature reviewProcessing timeLEMBCartagena de IndiasPúblico generalMontoya, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019.Rouzbehi, K.; Heidary Yazdi, S.S.; Shariati Moghadam, N. Power Flow Control in Multi-Terminal HVDC Grids Using a Serial-Parallel DC Power Flow Controller. IEEE Access 2018, 6, 56934–56944.Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703.Molzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 672–676.Li, H.; Zhang, L.; Shen, X. A loop-analysis theory based power flow method and its linear formulation for low-voltage DC grid. Electr. Power Syst. Res. 2020, 187, 106473.Simpson-Porco, J.W.; Dörfler, F.; Bullo, F. On Resistive Networks of Constant-Power Devices. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 811–815.Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322.Grainger, J.; Stevenson, W. Power System Analysis; Mcgraw-Hill Series in Electrical and Computer Engineering: Power and Energy; McGraw-Hill: New York, NY, USA, 1994.Krebs, V.; Schewe, L.; Schmidt, M. Uniqueness and multiplicity of market equilibria on DC power flow networks. Eur. J. Oper. Res. 2018, 271, 165–178.Milano, F. Analogy and Convergence of Levenberg’s and Lyapunov-Based Methods for Power Flow Analysis. IEEE Trans. Power Syst. 2016, 31, 1663–1664.Papadimitriou, C.; Zountouridou, E.; Hatziargyriou, N. Review of hierarchical control in DC microgrids. Electr. Power Syst. Res. 2015, 122, 159–167.Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925.Barelli, L.; Bidini, G.; Pelosi, D.; Ciupageanu, D.; Cardelli, E.; Castellini, S.; Lăzăroiu, G. Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids. Energy 2020, 204, 117939.Montoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289.Siraj, K.; Khan, H.A. DC distribution for residential power networks A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951.Duan, J.; Li, Z.; Zhou, Y.; Wei, Z. Study on the voltage level sequence of future urban DC distribution network in China: A Review. Int. J. Electr. Power Energy Syst. 2020, 117, 105640.Lotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304.Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Ramírez-Vanegas, C.A.; Montoya, O.D.; Ramos-Paja, C.A. Application of the backward/forward sweep method for solving the power flow problem in DC networks with radial structure. J. Phys. Conf. Ser. 2020, 1448, 012012.Gonzalez-longatt, F.; Roldan, J.; Charalambous, C. Solution of ac/dc power flow on a multiterminal HVDC system: Illustrative case supergrid phase I. In Proceedings of the 2012 47th Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012.Beerten, J.; Cole, S.; Belmans, R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Trans. Power Syst. 2012, 27, 821–829.Hartani, M.; Hamouda, M.; Abdelkhalek, O.; Benabdelkader, A.; Meftouhi, A. Static-Dynamic Analysis of an LVDC Smart Microgrid for a Saharian-Isolated Areas Using ETAP/MATLAB Software. In Smart Energy Empowerment in Smart and Resilient Cities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 496–505.Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153.Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777.Garces, A.; Montoya, D.; Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 1212–1217.Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 642–646.Capitanescu, F. Critical review of recent advances and further developments needed in AC optimal power flow. Electr. Power Syst. Res. 2016, 136, 57–68.Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243.Montoya, O.D.; Grisales-Noreña, L.F.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381.Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869.Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019.Montoya, O.D. On the Existence of the Power Flow Solution in DC Grids with CPLs Through a Graph-Based Method. IEEE Trans. Circuits Syst. II Express Briefs 2019.Garcés, A.; Herrera, J.; Gil-González, W.; Montoya, O. Small-Signal Stability in Low-Voltage DC-Grids. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5.Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454.Machado, J.E.; Griñó, R.; Barabanov, N.; Ortega, R.; Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2772–2782.Sanchez, S.; Ortega, R.; Griño, R.; Bergna, G.; Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2204–2211.Benedito, E.; del Puerto-Flores, D.; Dòria-Cerezo, A.; Scherpen, J.M. Port-Hamiltonian based Optimal Power Flow algorithm for multi-terminal DC networks. Control Eng. Pract. 2019, 83, 141–150.Lagace, P.J.; Vuong, M.H.; Kamwa, I. Improving power flow convergence by Newton Raphson with a Levenberg-Marquardt method. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6.Montoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II Express Briefs 2018.Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828.Montoya, O.D.; Escobar, A.F.; Garrido, V.M. Power flow solution in direct current grids using the linear conjugate gradient approach. J. Phys. Conf. Ser. 2020, 1448, 012016.Wang, W.; Barnes, M. Power Flow Algorithms for Multi-Terminal VSC-HVDC With Droop Control. IEEE Trans. Power Syst. 2014, 29, 1721–1730.Huang, G.; Ongsakul, W. Managing the bottlenecks in parallel Gauss-Seidel type algorithms for power flow analysis. IEEE Trans. Power Syst. 1994, 9, 677–684.Zhang, H.; Vittal, V.; Heydt, G.T.; Quintero, J. A relaxed AC optimal power flow model based on a Taylor series. In Proceedings of the 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 10–13 November 2013; pp. 1–5.Jesus, P.D.O.D.; Alvarez, M.; Yusta, J. Distribution power flow method based on a real quasi-symmetric matrix. Electr. Power Syst. Res. 2013, 95, 148–159.Moradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74.Grisales-Noreña, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134.Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018.Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407.Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734.http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL107.pdf107.pdfArtículo principalapplication/pdf565505https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/1/107.pdf2c1eb8a105cb3516ae0a96d585c8a625MD51TEXT107.pdf.txt107.pdf.txtExtracted texttext/plain62447https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/4/107.pdf.txt5fc6321836b6e4dc39e86a21acd51593MD54THUMBNAIL107.pdf.jpg107.pdf.jpgGenerated Thumbnailimage/jpeg87547https://repositorio.utb.edu.co/bitstream/20.500.12585/9940/5/107.pdf.jpg9d5a4c8e5e1b38c6922965ae4ab8d793MD5520.500.12585/9940oai:repositorio.utb.edu.co:20.500.12585/99402023-05-26 10:19:51.588Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=