On the convergence of the power flow methods for DC networks with mesh and radial structures

The convergence analysis of the power flow methodologies for direct current (dc) electrical networks is addressed in this paper. The Banach fixed-point theorem is employed to prove the convergence and uniqueness in the power flow solution for two different alternatives based on graph theory named su...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Orozco-Henao, César
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10036
Acceso en línea:
https://hdl.handle.net/20.500.12585/10036
https://www.sciencedirect.com/science/article/abs/pii/S0378779620306799
Palabra clave:
Banach fixed point theorem
Convergence analysis
Direct current networks
Power flow analysis
Radial and mesh structures
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_e09c85193f45fdb88696c9dd7a80478a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10036
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv On the convergence of the power flow methods for DC networks with mesh and radial structures
title On the convergence of the power flow methods for DC networks with mesh and radial structures
spellingShingle On the convergence of the power flow methods for DC networks with mesh and radial structures
Banach fixed point theorem
Convergence analysis
Direct current networks
Power flow analysis
Radial and mesh structures
LEMB
title_short On the convergence of the power flow methods for DC networks with mesh and radial structures
title_full On the convergence of the power flow methods for DC networks with mesh and radial structures
title_fullStr On the convergence of the power flow methods for DC networks with mesh and radial structures
title_full_unstemmed On the convergence of the power flow methods for DC networks with mesh and radial structures
title_sort On the convergence of the power flow methods for DC networks with mesh and radial structures
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Orozco-Henao, César
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Orozco-Henao, César
dc.subject.keywords.es_CO.fl_str_mv Banach fixed point theorem
Convergence analysis
Direct current networks
Power flow analysis
Radial and mesh structures
topic Banach fixed point theorem
Convergence analysis
Direct current networks
Power flow analysis
Radial and mesh structures
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The convergence analysis of the power flow methodologies for direct current (dc) electrical networks is addressed in this paper. The Banach fixed-point theorem is employed to prove the convergence and uniqueness in the power flow solution for two different alternatives based on graph theory named successive approximations and triangular-based power flow. The successive approximation method works with radial and mesh grids, including multiple voltage-controlled sources. The triangular-based method only deals with radial structures and one slack node. A six-nodes high-voltage dc system is used to illustrate the convergence of the graph-based methods under study. Three test feeders composed of 33, 35, and 69 nodes are used to validate the effectiveness of the proposed approaches when compared with classical methods such as Newton-Raphson and Gauss-Seidel. In addition, large-scale radial distribution networks are generated randomly with 50 to 200 nodes to demonstrate the scalability of studied power flow methods regarding processing time and the number of iterations. All the simulations have been conducted in MATLAB software.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-17T20:41:38Z
dc.date.available.none.fl_str_mv 2021-02-17T20:41:38Z
dc.date.issued.none.fl_str_mv 2021-02
dc.date.submitted.none.fl_str_mv 2021-02-17
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Oscar Danilo Montoya, Walter Gil-González, César Orozco-Henao, On the convergence of the power flow methods for DC networks with mesh and radial structures, Electric Power Systems Research, Volume 191, 2021, 106881, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2020.106881. (https://www.sciencedirect.com/science/article/pii/S0378779620306799)
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10036
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0378779620306799
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2020.106881
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Oscar Danilo Montoya, Walter Gil-González, César Orozco-Henao, On the convergence of the power flow methods for DC networks with mesh and radial structures, Electric Power Systems Research, Volume 191, 2021, 106881, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2020.106881. (https://www.sciencedirect.com/science/article/pii/S0378779620306799)
10.1016/j.epsr.2020.106881
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10036
https://www.sciencedirect.com/science/article/abs/pii/S0378779620306799
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessRights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Electric Power Systems Research Volume 191, February 2021, 106881
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/1/185.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/3/185.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/4/185.pdf.jpg
bitstream.checksum.fl_str_mv 975ed76fac324d1102e54544c52a7da6
e20ad307a1c5f3f25af9304a7a7c86b6
f6e42b852a5e409e8c82557fa08dd102
383b8cc4241ea575f29696852bbba354
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021637949882368
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Orozco-Henao, Césarcfb1cfea-5d74-4fc8-8a2e-223843a0e4aa2021-02-17T20:41:38Z2021-02-17T20:41:38Z2021-022021-02-17Oscar Danilo Montoya, Walter Gil-González, César Orozco-Henao, On the convergence of the power flow methods for DC networks with mesh and radial structures, Electric Power Systems Research, Volume 191, 2021, 106881, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2020.106881. (https://www.sciencedirect.com/science/article/pii/S0378779620306799)https://hdl.handle.net/20.500.12585/10036https://www.sciencedirect.com/science/article/abs/pii/S037877962030679910.1016/j.epsr.2020.106881Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe convergence analysis of the power flow methodologies for direct current (dc) electrical networks is addressed in this paper. The Banach fixed-point theorem is employed to prove the convergence and uniqueness in the power flow solution for two different alternatives based on graph theory named successive approximations and triangular-based power flow. The successive approximation method works with radial and mesh grids, including multiple voltage-controlled sources. The triangular-based method only deals with radial structures and one slack node. A six-nodes high-voltage dc system is used to illustrate the convergence of the graph-based methods under study. Three test feeders composed of 33, 35, and 69 nodes are used to validate the effectiveness of the proposed approaches when compared with classical methods such as Newton-Raphson and Gauss-Seidel. In addition, large-scale radial distribution networks are generated randomly with 50 to 200 nodes to demonstrate the scalability of studied power flow methods regarding processing time and the number of iterations. All the simulations have been conducted in MATLAB software.application/pdfengElectric Power Systems Research Volume 191, February 2021, 106881On the convergence of the power flow methods for DC networks with mesh and radial structuresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Banach fixed point theoremConvergence analysisDirect current networksPower flow analysisRadial and mesh structuresLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasInvestigadoresShen, T., Li, Y., Xiang, J. A graph-based power flow method for balanced distribution systems (Open Access) (2018) Energies, 11 (3), art. no. 511. Cited 13 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11030511Simpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 45 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537Garcés, A., Rodriguez-Garcia, L. An Approach for Nodal Admittance Matrix Real-Time Estimation on DC Microgrids (2019) IEEE Green Technologies Conference, 2019-April, art. no. 8767140. http://ieeexplore.ieee.org ISBN: 978-172811457-6 doi: 10.1109/GreenTech.2019.8767140http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL185.pdf185.pdfAbstractapplication/pdf87132https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/1/185.pdf975ed76fac324d1102e54544c52a7da6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT185.pdf.txt185.pdf.txtExtracted texttext/plain1264https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/3/185.pdf.txtf6e42b852a5e409e8c82557fa08dd102MD53THUMBNAIL185.pdf.jpg185.pdf.jpgGenerated Thumbnailimage/jpeg55987https://repositorio.utb.edu.co/bitstream/20.500.12585/10036/4/185.pdf.jpg383b8cc4241ea575f29696852bbba354MD5420.500.12585/10036oai:repositorio.utb.edu.co:20.500.12585/100362021-02-18 02:14:38.373Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=