Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling

The estimation of thermodynamic behavior during filling processes with entrapped air in water pipelines is a complex task as it requires solving a system of algebraic-differential equations. A lot of different numerical methods have been used for this purpose in literature including the rigid water...

Full description

Autores:
Bonilla-Correa, Dalia M.
Coronado-Hernández, Óscar E.
Fuertes-Miquel, Vicente S.
Besharat, Mohsen
Ramos, Helena M.
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12271
Acceso en línea:
https://hdl.handle.net/20.500.12585/12271
https://doi.org/10.3390/w15071304
Palabra clave:
Air; Geysers;
Emptying
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e01f3de03ba660147d72b5d46897d6c7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12271
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
title Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
spellingShingle Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
Air; Geysers;
Emptying
LEMB
title_short Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
title_full Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
title_fullStr Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
title_full_unstemmed Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
title_sort Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling
dc.creator.fl_str_mv Bonilla-Correa, Dalia M.
Coronado-Hernández, Óscar E.
Fuertes-Miquel, Vicente S.
Besharat, Mohsen
Ramos, Helena M.
dc.contributor.author.none.fl_str_mv Bonilla-Correa, Dalia M.
Coronado-Hernández, Óscar E.
Fuertes-Miquel, Vicente S.
Besharat, Mohsen
Ramos, Helena M.
dc.subject.keywords.spa.fl_str_mv Air; Geysers;
Emptying
topic Air; Geysers;
Emptying
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The estimation of thermodynamic behavior during filling processes with entrapped air in water pipelines is a complex task as it requires solving a system of algebraic-differential equations. A lot of different numerical methods have been used for this purpose in literature including the rigid water column (RWC) model. The main advantage of the RWC model is its acceptable accuracy with very low computational load. In that context, this research presents the computation of critical points of the physical equations that describe the phenomenon. These points provide information about the final position of the air–water interface. The Newton–Raphson method was then applied to obtain a unique equation that can be used by engineers to directly compute variables such as air pocket pressure and water column length at the end of the hydraulic event. A case study was analyzed to compare the results of the mathematical model with the obtained equation for computing critical points. Both methods provided the same values for the water column length at the end of the hydraulic event. A sensitivity analysis was conducted to identify dependent and non-dependent parameters for evaluating the critical points. The proposed formulation was validated through an experimental set of data. © 2023 by the authors.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:39:24Z
dc.date.available.none.fl_str_mv 2023-07-21T15:39:24Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Bonilla-Correa, D.M.; Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. Water 2023, 15, 1304. https://doi.org/10.3390/w15071304
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12271
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/w15071304
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Bonilla-Correa, D.M.; Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. Water 2023, 15, 1304. https://doi.org/10.3390/w15071304
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12271
https://doi.org/10.3390/w15071304
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Water (Switzerland)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/1/water-15-01304%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/4/water-15-01304%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/5/water-15-01304%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 91711267629be9887fb6c0fac0c98e46
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f1eb48918c77068f46d32882a1851117
e514277f5db35840e36ce9138b243243
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021617077977088
spelling Bonilla-Correa, Dalia M.db642292-e40e-4d2d-b8b3-620338cccabeCoronado-Hernández, Óscar E.b47200b6-5b93-42e3-b9ee-3c619bcec915Fuertes-Miquel, Vicente S.ee591d7a-dc42-4bff-b9db-a19f976e419bBesharat, Mohsen9bc60135-8166-40cd-9250-625e81504c7dRamos, Helena M.55b0330e-7043-4bb2-8745-c564ce43175a2023-07-21T15:39:24Z2023-07-21T15:39:24Z20232023Bonilla-Correa, D.M.; Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. Water 2023, 15, 1304. https://doi.org/10.3390/w15071304https://hdl.handle.net/20.500.12585/12271https://doi.org/10.3390/w15071304Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe estimation of thermodynamic behavior during filling processes with entrapped air in water pipelines is a complex task as it requires solving a system of algebraic-differential equations. A lot of different numerical methods have been used for this purpose in literature including the rigid water column (RWC) model. The main advantage of the RWC model is its acceptable accuracy with very low computational load. In that context, this research presents the computation of critical points of the physical equations that describe the phenomenon. These points provide information about the final position of the air–water interface. The Newton–Raphson method was then applied to obtain a unique equation that can be used by engineers to directly compute variables such as air pocket pressure and water column length at the end of the hydraulic event. A case study was analyzed to compare the results of the mathematical model with the obtained equation for computing critical points. Both methods provided the same values for the water column length at the end of the hydraulic event. A sensitivity analysis was conducted to identify dependent and non-dependent parameters for evaluating the critical points. The proposed formulation was validated through an experimental set of data. © 2023 by the authors.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Water (Switzerland)Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Fillinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Air; Geysers;EmptyingLEMBCartagena de IndiasTasca, E., Besharat, M., Ramos, H.M., Luvizotto, E., Karney, B. Contribution of Air Management to the Energy Efficiency of Water Pipelines (2023) Sustainability (Switzerland), 15 (5), art. no. 3875. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su15053875Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C. CFD modeling of transient flow in pressurized pipes (2016) Computers and Fluids, 126, pp. 129-140. Cited 70 times. doi: 10.1016/j.compfluid.2015.12.002Maddahian, R., Shaygan, F., Bucur, D.M. Developing a 1D-3D model to investigate the effect of entrapped air on pressure surge during the rapid filling of a pipe (2021) IOP Conference Series: Earth and Environmental Science, 774 (1), art. no. 012069. Cited 2 times. https://iopscience.iop.org/journal/1755-1315 doi: 10.1088/1755-1315/774/1/012069Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188(2016) Manual of Water Supply Practices M51—Air Valves: Air Release, Air/Vacuum and Combination. Cited 9 times. AWWA, Denver, CO, USAZhou, L., Liu, D. Experimental investigation of entrapped air pocket in a partially full water pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474. Cited 37 times. doi: 10.1080/00221686.2013.785985Tijsseling, A.S., Hou, Q., Bozkuş, Z. Rapid Liquid Filling of a Pipe With Venting Entrapped Gas: Analytical and Numerical Solutions (Open Access) (2019) Journal of Pressure Vessel Technology, Transactions of the ASME, 141 (4), art. no. 041301. Cited 11 times. https://pressurevesseltech.asmedigitalcollection.asme.org/journal.aspx doi: 10.1115/1.4043321Liou, C.P., Hunt, W.A. Filling of pipelines with undulating elevation profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539. Cited 83 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)0733-9429(1996)122:10(534)Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J. Pipeline start-up with entrapped air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590. Cited 91 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221689909498518Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (Open Access) (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001171Chan, S.N., Cong, J., Lee, J.H.W. 3D numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft (2018) Journal of Hydraulic Engineering, 144 (3), art. no. 04017071. Cited 29 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001416Wang, J., Vasconcelos, J.G. Manhole cover displacement caused by the release of entrapped air pockets (2018) Journal of Water Management Modeling, 2018, art. no. C444. Cited 10 times. https://www.chijournal.org/Journals/PDF/C444 doi: 10.14796/JWMM.C444Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046Tijsseling, A.S., Hou, Q., Bozkus, Z., Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (Open Access) (2016) Journal of Pressure Vessel Technology, Transactions of the ASME, 138 (3), art. no. 031301. Cited 35 times. http://asmedl.aip.org/PressureVesselTech doi: 10.1115/1.4031508Zhou, L., Cao, Y., Karney, B., Vasconcelos, J.G., Liu, D., Wang, P. Unsteady friction in transient vertical-pipe flow with trapped air (Open Access) (2021) Journal of Hydraulic Research, 59 (5), pp. 820-834. Cited 4 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2020.1844808Zhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (Open Access) (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427Zhou, L., Cao, Y., Karney, B., Bergant, A., Tijsseling, A.S., Liu, D., Wang, P. Expulsion of Entrapped Air in a Rapidly Filling Horizontal Pipe (2020) Journal of Hydraulic Engineering, 146 (7), art. no. 04020047. Cited 14 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001773Coronado-Hernández, O.E., Bonilla-Correa, D.M., Lovo, A., Fuertes-Miquel, V.S., Gatica, G., Linfati, R., Coronado-Hernández, J.R. An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations (2022) Water (Switzerland), 14 (21), art. no. 3364. Cited 2 times. http://www.mdpi.com/journal/water doi: 10.3390/w14213364Canelon, D.J. Pivoting strategies in the solution of the saint-venant equations (Open Access) (2009) Journal of Irrigation and Drainage Engineering, 135 (1), pp. 96-101. Cited 3 times. doi: 10.1061/(ASCE)0733-9437(2009)135:1(96)Martin, C.S. Entrapped Air in Pipelines Proceedings of the Second International Conference on Pressure Surges. Cited 148 times. London, UK, 22–24 September 1976Chapra, S., Canale, R. (2015) Numerical Methods for Engineers. Cited 3376 times. 7th ed., Mcgraw-Hill Education, Cop, New York, NY, USAhttp://purl.org/coar/resource_type/c_6501ORIGINALwater-15-01304 (1).pdfwater-15-01304 (1).pdfapplication/pdf6427838https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/1/water-15-01304%20%281%29.pdf91711267629be9887fb6c0fac0c98e46MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTwater-15-01304 (1).pdf.txtwater-15-01304 (1).pdf.txtExtracted texttext/plain54796https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/4/water-15-01304%20%281%29.pdf.txtf1eb48918c77068f46d32882a1851117MD54THUMBNAILwater-15-01304 (1).pdf.jpgwater-15-01304 (1).pdf.jpgGenerated Thumbnailimage/jpeg8043https://repositorio.utb.edu.co/bitstream/20.500.12585/12271/5/water-15-01304%20%281%29.pdf.jpge514277f5db35840e36ce9138b243243MD5520.500.12585/12271oai:repositorio.utb.edu.co:20.500.12585/122712023-07-22 00:17:30.521Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=