Local stable and unstable manifolds for anosov families
Anosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov f...
- Autores:
-
Muentes Acevedo, Jeovanny de Jesus,
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12371
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12371
- Palabra clave:
- Expanding Maps;
Dynamical System;
SRB Measure
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_df47f00e3ea749c00288d743a10490c6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12371 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Local stable and unstable manifolds for anosov families |
title |
Local stable and unstable manifolds for anosov families |
spellingShingle |
Local stable and unstable manifolds for anosov families Expanding Maps; Dynamical System; SRB Measure LEMB |
title_short |
Local stable and unstable manifolds for anosov families |
title_full |
Local stable and unstable manifolds for anosov families |
title_fullStr |
Local stable and unstable manifolds for anosov families |
title_full_unstemmed |
Local stable and unstable manifolds for anosov families |
title_sort |
Local stable and unstable manifolds for anosov families |
dc.creator.fl_str_mv |
Muentes Acevedo, Jeovanny de Jesus, |
dc.contributor.author.none.fl_str_mv |
Muentes Acevedo, Jeovanny de Jesus, |
dc.subject.keywords.spa.fl_str_mv |
Expanding Maps; Dynamical System; SRB Measure |
topic |
Expanding Maps; Dynamical System; SRB Measure LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Anosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov families, in this paper we build local stable and local manifolds for such families. © Hokkaido University. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T20:46:55Z |
dc.date.available.none.fl_str_mv |
2023-07-21T20:46:55Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12371 |
dc.identifier.doi.none.fl_str_mv |
10.14492/hokmj/1573722016 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535. 10.14492/hokmj/1573722016 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12371 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Hokkaido Mathematical Journal |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/1/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/5/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/4/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.jpg |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 10a062ec2f9bd511e6506e1213e4e7c2 6bc8c02b1e93e669ff5ebd062e418b25 24643bb0a4d8c436f8375b852d0f1e97 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021666378874880 |
spelling |
Muentes Acevedo, Jeovanny de Jesus,ec5c0208-d53f-44d4-a347-fdb3d28db2ab2023-07-21T20:46:55Z2023-07-21T20:46:55Z20192023Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535.https://hdl.handle.net/20.500.12585/1237110.14492/hokmj/1573722016Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAnosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov families, in this paper we build local stable and local manifolds for such families. © Hokkaido University.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Hokkaido Mathematical JournalLocal stable and unstable manifolds for anosov familiesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Expanding Maps;Dynamical System;SRB MeasureLEMBCartagena de IndiasMuentes Acevedo, J.J. On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems (2018) Bulletin of the Brazilian Mathematical Society, 49 (1), pp. 89-106. Cited 4 times. http://link.springer-ny.com/link/service/journals/00574/index.htm doi: 10.1007/s00574-017-0049-5Acevedo, J.J.M. Openness of Anosov families (2018) Journal of the Korean Mathematical Society, 55 (3), pp. 575-591. Cited 3 times. http://pdf.medrang.co.kr/kms01/JKMS/55/JKMS-55-3-575-591.pdf doi: 10.4134/JKMS.j170312Muentes Acevedo, J.D.J. Structural stability and a characterization of Anosov families (2019) Dynamical Systems, 34 (3), pp. 399-421. Cited 3 times. www.tandf.co.uk/journals/titles/14689367.asp doi: 10.1080/14689367.2018.1546380Arnoux, P., Fisher, A.M. Anosov families, renormalization and non-stationary subshifts (2005) Ergodic Theory and Dynamical Systems, 25 (3), pp. 661-709. Cited 25 times. doi: 10.1017/S0143385704000641Barreira, L., Pesin, Y. (2007) Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents, 115. Cited 222 times. Cambridge University PressBorrelli, V., Jabrane, S., Lazarus, F., Thibert, B. Isometric embeddings of the square flat torus in ambient space. (2013) Ensaios Matematicos, 24, pp. 1-91. Cited 9 times.Hirsch, M.W., Pugh, C.C. Stable manifolds for hyperbolic sets (Open Access) (1969) Bulletin of the American Mathematical Society, 75 (1), pp. 149-152. Cited 22 times. doi: 10.1090/S0002-9904-1969-12184-1Kawan, C., Latushkin, Y. Some results on the entropy of non-autonomous dynamical systems (Open Access) (2016) Dynamical Systems, 31 (3), pp. 251-279. Cited 24 times. www.tandf.co.uk/journals/titles/14689367.asp doi: 10.1080/14689367.2015.1111299Stenlund, M. Non-stationary compositions of Anosov diffeomorphisms (2011) Nonlinearity, 24 (10), pp. 2991-3018. Cited 21 times. http://iopscience.iop.org/0951-7715/24/10/016/pdf/0951-7715_24_10_016.pdf doi: 10.1088/0951-7715/24/10/016http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Local stable and unstable manifolds for anosov families.pdfScopus - Document details - Local stable and unstable manifolds for anosov families.pdfapplication/pdf15494https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/1/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf10a062ec2f9bd511e6506e1213e4e7c2MD51TEXTScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.txtScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.txtExtracted texttext/plain30https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/5/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.txt6bc8c02b1e93e669ff5ebd062e418b25MD55THUMBNAILScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.jpgScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.jpgGenerated Thumbnailimage/jpeg1288https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/4/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.jpg24643bb0a4d8c436f8375b852d0f1e97MD5420.500.12585/12371oai:repositorio.utb.edu.co:20.500.12585/123712023-07-23 00:17:35.062Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |