Local stable and unstable manifolds for anosov families

Anosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov f...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus,
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12371
Acceso en línea:
https://hdl.handle.net/20.500.12585/12371
Palabra clave:
Expanding Maps;
Dynamical System;
SRB Measure
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_df47f00e3ea749c00288d743a10490c6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12371
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Local stable and unstable manifolds for anosov families
title Local stable and unstable manifolds for anosov families
spellingShingle Local stable and unstable manifolds for anosov families
Expanding Maps;
Dynamical System;
SRB Measure
LEMB
title_short Local stable and unstable manifolds for anosov families
title_full Local stable and unstable manifolds for anosov families
title_fullStr Local stable and unstable manifolds for anosov families
title_full_unstemmed Local stable and unstable manifolds for anosov families
title_sort Local stable and unstable manifolds for anosov families
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny de Jesus,
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny de Jesus,
dc.subject.keywords.spa.fl_str_mv Expanding Maps;
Dynamical System;
SRB Measure
topic Expanding Maps;
Dynamical System;
SRB Measure
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Anosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov families, in this paper we build local stable and local manifolds for such families. © Hokkaido University.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:46:55Z
dc.date.available.none.fl_str_mv 2023-07-21T20:46:55Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12371
dc.identifier.doi.none.fl_str_mv 10.14492/hokmj/1573722016
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535.
10.14492/hokmj/1573722016
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12371
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Hokkaido Mathematical Journal
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/1/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/5/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/4/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
10a062ec2f9bd511e6506e1213e4e7c2
6bc8c02b1e93e669ff5ebd062e418b25
24643bb0a4d8c436f8375b852d0f1e97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021666378874880
spelling Muentes Acevedo, Jeovanny de Jesus,ec5c0208-d53f-44d4-a347-fdb3d28db2ab2023-07-21T20:46:55Z2023-07-21T20:46:55Z20192023Acevedo, J. D. J. M. (2019). Local stable and unstable manifolds for Anosov families. Hokkaido Mathematical Journal, 48(3), 513-535.https://hdl.handle.net/20.500.12585/1237110.14492/hokmj/1573722016Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAnosov families were introduced by A. Fisher and P. Arnoux motivated by generalizing the notion of Anosov diffeomorphism defined on a compact Riemannian manifold. They are time-dependent dynamical systems with hyperbolic behavior. In addition to presenting several properties and examples of Anosov families, in this paper we build local stable and local manifolds for such families. © Hokkaido University.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Hokkaido Mathematical JournalLocal stable and unstable manifolds for anosov familiesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Expanding Maps;Dynamical System;SRB MeasureLEMBCartagena de IndiasMuentes Acevedo, J.J. On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems (2018) Bulletin of the Brazilian Mathematical Society, 49 (1), pp. 89-106. Cited 4 times. http://link.springer-ny.com/link/service/journals/00574/index.htm doi: 10.1007/s00574-017-0049-5Acevedo, J.J.M. Openness of Anosov families (2018) Journal of the Korean Mathematical Society, 55 (3), pp. 575-591. Cited 3 times. http://pdf.medrang.co.kr/kms01/JKMS/55/JKMS-55-3-575-591.pdf doi: 10.4134/JKMS.j170312Muentes Acevedo, J.D.J. Structural stability and a characterization of Anosov families (2019) Dynamical Systems, 34 (3), pp. 399-421. Cited 3 times. www.tandf.co.uk/journals/titles/14689367.asp doi: 10.1080/14689367.2018.1546380Arnoux, P., Fisher, A.M. Anosov families, renormalization and non-stationary subshifts (2005) Ergodic Theory and Dynamical Systems, 25 (3), pp. 661-709. Cited 25 times. doi: 10.1017/S0143385704000641Barreira, L., Pesin, Y. (2007) Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents, 115. Cited 222 times. Cambridge University PressBorrelli, V., Jabrane, S., Lazarus, F., Thibert, B. Isometric embeddings of the square flat torus in ambient space. (2013) Ensaios Matematicos, 24, pp. 1-91. Cited 9 times.Hirsch, M.W., Pugh, C.C. Stable manifolds for hyperbolic sets (Open Access) (1969) Bulletin of the American Mathematical Society, 75 (1), pp. 149-152. Cited 22 times. doi: 10.1090/S0002-9904-1969-12184-1Kawan, C., Latushkin, Y. Some results on the entropy of non-autonomous dynamical systems (Open Access) (2016) Dynamical Systems, 31 (3), pp. 251-279. Cited 24 times. www.tandf.co.uk/journals/titles/14689367.asp doi: 10.1080/14689367.2015.1111299Stenlund, M. Non-stationary compositions of Anosov diffeomorphisms (2011) Nonlinearity, 24 (10), pp. 2991-3018. Cited 21 times. http://iopscience.iop.org/0951-7715/24/10/016/pdf/0951-7715_24_10_016.pdf doi: 10.1088/0951-7715/24/10/016http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALScopus - Document details - Local stable and unstable manifolds for anosov families.pdfScopus - Document details - Local stable and unstable manifolds for anosov families.pdfapplication/pdf15494https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/1/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf10a062ec2f9bd511e6506e1213e4e7c2MD51TEXTScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.txtScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.txtExtracted texttext/plain30https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/5/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.txt6bc8c02b1e93e669ff5ebd062e418b25MD55THUMBNAILScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.jpgScopus - Document details - Local stable and unstable manifolds for anosov families.pdf.jpgGenerated Thumbnailimage/jpeg1288https://repositorio.utb.edu.co/bitstream/20.500.12585/12371/4/Scopus%20-%20Document%20details%20-%20Local%20stable%20and%20unstable%20manifolds%20for%20anosov%20families.pdf.jpg24643bb0a4d8c436f8375b852d0f1e97MD5420.500.12585/12371oai:repositorio.utb.edu.co:20.500.12585/123712023-07-23 00:17:35.062Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=