Approximated mixed-integer convex model for phase balancing in three-phase electric networks
With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied b...
- Autores:
-
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12283
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12283
https://doi.org/10.3390/computers10090109
- Palabra clave:
- Distribution Network;
Reconfiguration;
Distributed Generation
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_def3c048e1f2071e959729bdd7bbfeca |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12283 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
title |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
spellingShingle |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks Distribution Network; Reconfiguration; Distributed Generation LEMB |
title_short |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
title_full |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
title_fullStr |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
title_full_unstemmed |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
title_sort |
Approximated mixed-integer convex model for phase balancing in three-phase electric networks |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Rivas-Trujillo, Edwin |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Rivas-Trujillo, Edwin |
dc.subject.keywords.spa.fl_str_mv |
Distribution Network; Reconfiguration; Distributed Generation |
topic |
Distribution Network; Reconfiguration; Distributed Generation LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:45:58Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:45:58Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12283 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/computers10090109 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12283 https://doi.org/10.3390/computers10090109 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Computers 2021, 10, 109 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/1/computers-10-00109-v2.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/4/computers-10-00109-v2.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/5/computers-10-00109-v2.pdf.jpg |
bitstream.checksum.fl_str_mv |
9fe0785f57fc18b7228e49b110c5441a 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 1a55540f87e6320df08ca6d303349734 dfa2dd1487a40e9928c86b386d6d47f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021780866596864 |
spelling |
Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Rivas-Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2023-07-21T15:45:58Z2023-07-21T15:45:58Z20212023Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109https://hdl.handle.net/20.500.12585/12283https://doi.org/10.3390/computers10090109Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWith this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers 2021, 10, 109Approximated mixed-integer convex model for phase balancing in three-phase electric networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Distribution Network;Reconfiguration;Distributed GenerationLEMBCartagena de IndiasGarces, A., Gil-González, W., Montoya, O.D., Chamorro, H.R., Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids (2021) Appl. Sci, 11, p. 1972. Cited 10 times.Ma, K., Fang, L., Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions (2020) CSEE Journal of Power and Energy Systems, 6 (3), art. no. 9098161, pp. 479-488. Cited 39 times. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7054730 doi: 10.17775/CSEEJPES.2019.03280Montoya, O.D., Molina-Cabrera, A., Grisales-Noreña, L.F., Hincapié, R.A., Granada, A. Improved genetic algorithm for phase-balancing in three-phase distribution networks: A master-slave optimization approach (2021) Computation, 9 (6), art. no. 67. Cited 11 times. https://www.mdpi.com/2079-3197/9/6/67/pdf doi: 10.3390/computation9060067Kong, W., Ma, K., Fang, L., Wei, R., Li, F. Cost-Benefit Analysis of Phase Balancing Solution for Data-Scarce LV Networks by Cluster-Wise Gaussian Process Regression (2020) IEEE Transactions on Power Systems, 35 (4), art. no. 8959309, pp. 3170-3180. Cited 8 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2020.2966601Granada, M., Gallego, R.A., López, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm (2012) Ing. Y Cienc, 8, pp. 121-140. Cited 27 times.Montoya, O.D., Giraldo, J.S., Grisales-Noreña, L.F., Chamorro, H.R., Alvarado-Barrios, L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks (2021) Computation, 9 (6), art. no. 61. Cited 18 times. https://www.mdpi.com/2079-3197/9/6/61/pdf doi: 10.3390/computation9060061Tuppadung, Y., Kurutach, W. The modified particle swarm optimization for phase balancing (2006) IEEE Region 10 Annual International Conference, Proceedings/TENCON, art. no. 4142320. Cited 8 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000751 ISBN: 1424405491; 978-142440549-7 doi: 10.1109/TENCON.2006.344014Cortés-Caicedo, B., Avellaneda-Gómez, L.S., Montoya, O.D., Alvarado-Barrios, L., Chamorro, H.R. Application of the vortex search algorithm to the phase-balancing problem in distribution systems (2021) Energies, 14 (5), art. no. 1282. Cited 22 times. https://www.mdpi.com/1996-1073/14/5/1282/pdf doi: 10.3390/en14051282Zhu, J. Phase balancing using simulated annealing (1999) IEEE Transactions on Power Systems, 14 (4), pp. 1508-1513. Cited 94 times. doi: 10.1109/59.801943Sathiskumar, M., Nirmal Kumar, A., Lakshminarasimman, L., Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system (Open Access) (2012) International Journal of Electrical Power and Energy Systems, 42 (1), pp. 91-97. Cited 34 times. doi: 10.1016/j.ijepes.2012.03.029Montoya, O.D., Arias-Londoño, A., Grisales-Noreña, L.F., Barrios, J.Á., Chamorro, H.R. Optimal demand reconfiguration in three-phase distribution grids using an mi-convex model (Open Access) (2021) Symmetry, 13 (7). Cited 9 times. https://www.mdpi.com/2073-8994/13/7/1124/pdf doi: 10.3390/sym13071124Sur, U., Sarkar, G. A Sufficient Condition for Multiple Load Flow Solutions Existence in Three Phase Unbalanced Active Distribution Networks (Open Access) (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (6), pp. 784-788. Cited 18 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2017.2751542Cortés-Caicedo, B., Avellaneda-Gómez, L.S., Montoya, O.D., Alvarado-Barrios, L., Álvarez-Arroyo, C. An improved crow search algorithm applied to the phase swapping problem in asymmetric distribution systems (Open Access) (2021) Symmetry, 13 (8), art. no. 1329. Cited 7 times. https://www.mdpi.com/2073-8994/13/8/1329/pdf doi: 10.3390/sym13081329Benson, H.Y., Sağlam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey (2013) Theory Driven by Influential Applications, pp. 13-36. Cited 40 times. INFORMS: Catonsville, MD, USASereeter, B., Vuik, K., Witteveen, C. Newton power flow methods for unbalanced three-phase distribution networks (Open Access) (2017) Energies, 10 (10), art. no. 1658. Cited 43 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en10101658Shen, T., Li, Y., Xiang, J. A graph-based power flow method for balanced distribution systems (Open Access) (2018) Energies, 11 (3), art. no. 511. Cited 58 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11030511Marini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (Open Access) (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Montoya, O.D., Alarcon-Villamil, J.A., Hernández, J.C. Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses (Open Access) (2021) Energies, 14 (15), art. no. 4535. Cited 10 times. https://www.mdpi.com/1996-1073/14/15/4535/pdf doi: 10.3390/en14154535Kayabekir, A.E., Nigdeli, M. Statistical Evaluation of Metaheuristic Algorithm: An Optimum Reinforced Concrete T-beam Problem (Open Access) (2021) Studies in Systems, Decision and Control, 326, pp. 299-310. Cited 3 times. www.springer.com/series/13304 doi: 10.1007/978-3-030-61848-3_11Chicco, G., Mazza, A. Metaheuristic optimization of power and energy systems: Underlying principles and main issues of the 'rush to heuristics' (Open Access) (2020) Energies, 13 (19), art. no. 5097. Cited 21 times. https://www.mdpi.com/1996-1073/13/19/5097 doi: 10.3390/en13195097http://purl.org/coar/resource_type/c_6501ORIGINALcomputers-10-00109-v2.pdfcomputers-10-00109-v2.pdfapplication/pdf288822https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/1/computers-10-00109-v2.pdf9fe0785f57fc18b7228e49b110c5441aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTcomputers-10-00109-v2.pdf.txtcomputers-10-00109-v2.pdf.txtExtracted texttext/plain39615https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/4/computers-10-00109-v2.pdf.txt1a55540f87e6320df08ca6d303349734MD54THUMBNAILcomputers-10-00109-v2.pdf.jpgcomputers-10-00109-v2.pdf.jpgGenerated Thumbnailimage/jpeg7911https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/5/computers-10-00109-v2.pdf.jpgdfa2dd1487a40e9928c86b386d6d47f4MD5520.500.12585/12283oai:repositorio.utb.edu.co:20.500.12585/122832023-07-22 00:17:53.786Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |