Approximated mixed-integer convex model for phase balancing in three-phase electric networks

With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied b...

Full description

Autores:
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12283
Acceso en línea:
https://hdl.handle.net/20.500.12585/12283
https://doi.org/10.3390/computers10090109
Palabra clave:
Distribution Network;
Reconfiguration;
Distributed Generation
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_def3c048e1f2071e959729bdd7bbfeca
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12283
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Approximated mixed-integer convex model for phase balancing in three-phase electric networks
title Approximated mixed-integer convex model for phase balancing in three-phase electric networks
spellingShingle Approximated mixed-integer convex model for phase balancing in three-phase electric networks
Distribution Network;
Reconfiguration;
Distributed Generation
LEMB
title_short Approximated mixed-integer convex model for phase balancing in three-phase electric networks
title_full Approximated mixed-integer convex model for phase balancing in three-phase electric networks
title_fullStr Approximated mixed-integer convex model for phase balancing in three-phase electric networks
title_full_unstemmed Approximated mixed-integer convex model for phase balancing in three-phase electric networks
title_sort Approximated mixed-integer convex model for phase balancing in three-phase electric networks
dc.creator.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
dc.subject.keywords.spa.fl_str_mv Distribution Network;
Reconfiguration;
Distributed Generation
topic Distribution Network;
Reconfiguration;
Distributed Generation
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:45:58Z
dc.date.available.none.fl_str_mv 2023-07-21T15:45:58Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12283
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/computers10090109
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12283
https://doi.org/10.3390/computers10090109
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Computers 2021, 10, 109
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/1/computers-10-00109-v2.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/4/computers-10-00109-v2.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/5/computers-10-00109-v2.pdf.jpg
bitstream.checksum.fl_str_mv 9fe0785f57fc18b7228e49b110c5441a
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
1a55540f87e6320df08ca6d303349734
dfa2dd1487a40e9928c86b386d6d47f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021780866596864
spelling Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Rivas-Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2023-07-21T15:45:58Z2023-07-21T15:45:58Z20212023Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109https://hdl.handle.net/20.500.12585/12283https://doi.org/10.3390/computers10090109Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWith this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers 2021, 10, 109Approximated mixed-integer convex model for phase balancing in three-phase electric networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Distribution Network;Reconfiguration;Distributed GenerationLEMBCartagena de IndiasGarces, A., Gil-González, W., Montoya, O.D., Chamorro, H.R., Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids (2021) Appl. Sci, 11, p. 1972. Cited 10 times.Ma, K., Fang, L., Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions (2020) CSEE Journal of Power and Energy Systems, 6 (3), art. no. 9098161, pp. 479-488. Cited 39 times. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7054730 doi: 10.17775/CSEEJPES.2019.03280Montoya, O.D., Molina-Cabrera, A., Grisales-Noreña, L.F., Hincapié, R.A., Granada, A. Improved genetic algorithm for phase-balancing in three-phase distribution networks: A master-slave optimization approach (2021) Computation, 9 (6), art. no. 67. Cited 11 times. https://www.mdpi.com/2079-3197/9/6/67/pdf doi: 10.3390/computation9060067Kong, W., Ma, K., Fang, L., Wei, R., Li, F. Cost-Benefit Analysis of Phase Balancing Solution for Data-Scarce LV Networks by Cluster-Wise Gaussian Process Regression (2020) IEEE Transactions on Power Systems, 35 (4), art. no. 8959309, pp. 3170-3180. Cited 8 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2020.2966601Granada, M., Gallego, R.A., López, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm (2012) Ing. Y Cienc, 8, pp. 121-140. Cited 27 times.Montoya, O.D., Giraldo, J.S., Grisales-Noreña, L.F., Chamorro, H.R., Alvarado-Barrios, L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks (2021) Computation, 9 (6), art. no. 61. Cited 18 times. https://www.mdpi.com/2079-3197/9/6/61/pdf doi: 10.3390/computation9060061Tuppadung, Y., Kurutach, W. The modified particle swarm optimization for phase balancing (2006) IEEE Region 10 Annual International Conference, Proceedings/TENCON, art. no. 4142320. Cited 8 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000751 ISBN: 1424405491; 978-142440549-7 doi: 10.1109/TENCON.2006.344014Cortés-Caicedo, B., Avellaneda-Gómez, L.S., Montoya, O.D., Alvarado-Barrios, L., Chamorro, H.R. Application of the vortex search algorithm to the phase-balancing problem in distribution systems (2021) Energies, 14 (5), art. no. 1282. Cited 22 times. https://www.mdpi.com/1996-1073/14/5/1282/pdf doi: 10.3390/en14051282Zhu, J. Phase balancing using simulated annealing (1999) IEEE Transactions on Power Systems, 14 (4), pp. 1508-1513. Cited 94 times. doi: 10.1109/59.801943Sathiskumar, M., Nirmal Kumar, A., Lakshminarasimman, L., Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system (Open Access) (2012) International Journal of Electrical Power and Energy Systems, 42 (1), pp. 91-97. Cited 34 times. doi: 10.1016/j.ijepes.2012.03.029Montoya, O.D., Arias-Londoño, A., Grisales-Noreña, L.F., Barrios, J.Á., Chamorro, H.R. Optimal demand reconfiguration in three-phase distribution grids using an mi-convex model (Open Access) (2021) Symmetry, 13 (7). Cited 9 times. https://www.mdpi.com/2073-8994/13/7/1124/pdf doi: 10.3390/sym13071124Sur, U., Sarkar, G. A Sufficient Condition for Multiple Load Flow Solutions Existence in Three Phase Unbalanced Active Distribution Networks (Open Access) (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (6), pp. 784-788. Cited 18 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2017.2751542Cortés-Caicedo, B., Avellaneda-Gómez, L.S., Montoya, O.D., Alvarado-Barrios, L., Álvarez-Arroyo, C. An improved crow search algorithm applied to the phase swapping problem in asymmetric distribution systems (Open Access) (2021) Symmetry, 13 (8), art. no. 1329. Cited 7 times. https://www.mdpi.com/2073-8994/13/8/1329/pdf doi: 10.3390/sym13081329Benson, H.Y., Sağlam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey (2013) Theory Driven by Influential Applications, pp. 13-36. Cited 40 times. INFORMS: Catonsville, MD, USASereeter, B., Vuik, K., Witteveen, C. Newton power flow methods for unbalanced three-phase distribution networks (Open Access) (2017) Energies, 10 (10), art. no. 1658. Cited 43 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en10101658Shen, T., Li, Y., Xiang, J. A graph-based power flow method for balanced distribution systems (Open Access) (2018) Energies, 11 (3), art. no. 511. Cited 58 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11030511Marini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (Open Access) (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Montoya, O.D., Alarcon-Villamil, J.A., Hernández, J.C. Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses (Open Access) (2021) Energies, 14 (15), art. no. 4535. Cited 10 times. https://www.mdpi.com/1996-1073/14/15/4535/pdf doi: 10.3390/en14154535Kayabekir, A.E., Nigdeli, M. Statistical Evaluation of Metaheuristic Algorithm: An Optimum Reinforced Concrete T-beam Problem (Open Access) (2021) Studies in Systems, Decision and Control, 326, pp. 299-310. Cited 3 times. www.springer.com/series/13304 doi: 10.1007/978-3-030-61848-3_11Chicco, G., Mazza, A. Metaheuristic optimization of power and energy systems: Underlying principles and main issues of the 'rush to heuristics' (Open Access) (2020) Energies, 13 (19), art. no. 5097. Cited 21 times. https://www.mdpi.com/1996-1073/13/19/5097 doi: 10.3390/en13195097http://purl.org/coar/resource_type/c_6501ORIGINALcomputers-10-00109-v2.pdfcomputers-10-00109-v2.pdfapplication/pdf288822https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/1/computers-10-00109-v2.pdf9fe0785f57fc18b7228e49b110c5441aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTcomputers-10-00109-v2.pdf.txtcomputers-10-00109-v2.pdf.txtExtracted texttext/plain39615https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/4/computers-10-00109-v2.pdf.txt1a55540f87e6320df08ca6d303349734MD54THUMBNAILcomputers-10-00109-v2.pdf.jpgcomputers-10-00109-v2.pdf.jpgGenerated Thumbnailimage/jpeg7911https://repositorio.utb.edu.co/bitstream/20.500.12585/12283/5/computers-10-00109-v2.pdf.jpgdfa2dd1487a40e9928c86b386d6d47f4MD5520.500.12585/12283oai:repositorio.utb.edu.co:20.500.12585/122832023-07-22 00:17:53.786Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=