PBC approach applied on a DC-DC step-down converter for providing service to CPLs
This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in t...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9039
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9039
- Palabra clave:
- Asymptotic stability
Constant power loads
Hamiltonian models
Output voltage regulation
Passivity-based control
Asymptotic stability
Automation
Controllers
Process control
Productivity
Three term control systems
Voltage regulators
Constant power load
Constant power loads (CPL)
Conventional pid
Hamiltonian models
Numerical results
Output voltage regulation
Passivity based control
Step-down converter
DC-DC converters
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_ddd5f15dadb5dd7d22d653a0e7a28fb7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9039 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
title |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
spellingShingle |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs Asymptotic stability Constant power loads Hamiltonian models Output voltage regulation Passivity-based control Asymptotic stability Automation Controllers Process control Productivity Three term control systems Voltage regulators Constant power load Constant power loads (CPL) Conventional pid Hamiltonian models Numerical results Output voltage regulation Passivity based control Step-down converter DC-DC converters |
title_short |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
title_full |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
title_fullStr |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
title_full_unstemmed |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
title_sort |
PBC approach applied on a DC-DC step-down converter for providing service to CPLs |
dc.contributor.editor.none.fl_str_mv |
Garcia-Tirado J. Munoz-Durango D. Alvarez H. Botero-Castro H. |
dc.subject.keywords.none.fl_str_mv |
Asymptotic stability Constant power loads Hamiltonian models Output voltage regulation Passivity-based control Asymptotic stability Automation Controllers Process control Productivity Three term control systems Voltage regulators Constant power load Constant power loads (CPL) Conventional pid Hamiltonian models Numerical results Output voltage regulation Passivity based control Step-down converter DC-DC converters |
topic |
Asymptotic stability Constant power loads Hamiltonian models Output voltage regulation Passivity-based control Asymptotic stability Automation Controllers Process control Productivity Three term control systems Voltage regulators Constant power load Constant power loads (CPL) Conventional pid Hamiltonian models Numerical results Output voltage regulation Passivity based control Step-down converter DC-DC converters |
description |
This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in this nonlinear load a passivity-based control (PBC) approach is proposed. The main advantage of the proposed control approach corresponds to the parametric independence of the controller, even if the CPL and the asymptotic stability in the sense of Lyapunov are unknown. Numerical results validate the proposed control approach in comparison to conventional PID controller. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings |
dc.identifier.isbn.none.fl_str_mv |
9781538669624 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9039 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CCAC.2019.8920944 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 37104976300 57190661793 |
identifier_str_mv |
4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings 9781538669624 10.1109/CCAC.2019.8920944 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 37104976300 57190661793 |
url |
https://hdl.handle.net/20.500.12585/9039 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
15 October 2019 through 18 October 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077954097&doi=10.1109%2fCCAC.2019.8920944&partnerID=40&md5=0a22a7d107d63f171128788ef368922a Scopus2-s2.0-85077954097 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
4th IEEE Colombian Conference on Automatic Control, CCAC 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9039/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021693371318272 |
spelling |
Garcia-Tirado J.Munoz-Durango D.Alvarez H.Botero-Castro H.Montoya O.D.Gil-González, WalterSerra F.M.Magaldi G.2020-03-26T16:32:49Z2020-03-26T16:32:49Z20194th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings9781538669624https://hdl.handle.net/20.500.12585/903910.1109/CCAC.2019.8920944Universidad Tecnológica de BolívarRepositorio UTB56919564100571914936483710497630057190661793This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in this nonlinear load a passivity-based control (PBC) approach is proposed. The main advantage of the proposed control approach corresponds to the parametric independence of the controller, even if the CPL and the asymptotic stability in the sense of Lyapunov are unknown. Numerical results validate the proposed control approach in comparison to conventional PID controller. © 2019 IEEE.Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Universidad Nacional de San Luis, UNSL: PROICO 142318, PICT-2017-0794 National Council for Scientific Research, NCSR Consejo Nacional de Investigaciones Científicas y Técnicas, CONICETColombian Conference on Automatic Control (CCAC);IEEE;IEEE Colombia;IEEE Colombian Chapter (CSS)This work was supported in part by the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, by the Universidad Tecnológica de Bolívar under Project C2018P020, by the National Council of Scientific and Technical Research (CONICET) and by Universidad Nacional de San Luis (UNSL) under Project PROICO 142318 and PICT-2017-0794.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077954097&doi=10.1109%2fCCAC.2019.8920944&partnerID=40&md5=0a22a7d107d63f171128788ef368922aScopus2-s2.0-850779540974th IEEE Colombian Conference on Automatic Control, CCAC 2019PBC approach applied on a DC-DC step-down converter for providing service to CPLsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAsymptotic stabilityConstant power loadsHamiltonian modelsOutput voltage regulationPassivity-based controlAsymptotic stabilityAutomationControllersProcess controlProductivityThree term control systemsVoltage regulatorsConstant power loadConstant power loads (CPL)Conventional pidHamiltonian modelsNumerical resultsOutput voltage regulationPassivity based controlStep-down converterDC-DC converters15 October 2019 through 18 October 2019Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Kumar, D., Zare, F., Ghosh, A., Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects (2017) IEEE Access, 5 (230), p. 12. , 12 256Solsona, J., Gomez Jorge, S., Busada, C., Nonlinear control of a buck converter feeding a constant power load (2014) IEEE Latin America Transactions, 12 (5), pp. 899-903. , AugAl-Nussairi, M., Bayindir, R., Padmanaban, S., Mihet-Popa, L., Siano, P., Constant power loads (cpl) with microgrids: Problem definition, stability analysis and compensation techniques (2017) Energies, 10 (1656), pp. 1-20. , JunHassan, M.A., Li, E., Li, X., Li, T., Duan, C., Chi, S., Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems (2018) IEEE Journal of Emerging and Selected Topics in Power Electronics, p. 1Microcontroller based bidirectional buckboost converter for photo-voltaic power plant (2018) J. Electr. Syst. Inf. Technol., 5 (3), pp. 745-758. , V. V. and V. S. R. RDi Piazza, M.C., Pucci, M., Ragusa, A., Vitale, G., Analytical versus neural real-Time simulation of a photovoltaic generator based on a DC-DC converter (2010) IEEE Trans. Ind. Appl., 46 (6), pp. 2501-2510. , NovMontoya, O.D., Garcés, A., Ortega-Velázquez, I., Espinosa-Pérez, G.R., Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. , AprilHerrera, L., Zhang, W., Wang, J., Stability analysis and controller design of DC microgrids with constant power loads (2017) IEEE Trans. Smart Grid, 8 (2), pp. 881-888. , MarchSimpson-Porco, J.W., Drfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815. , AugSingh, S., Gautam, A.R., Fulwani, D., Constant power loads and their effects in DC distributed power systems: A review (2017) Renewable Sustainable Energy Rev., 72, pp. 407-421Cavanini, L., Cimini, G., Ippoliti, G., Bemporad, A., Model predictive control for pre-compensated voltage mode controlled DCdc converters (2017) IET Control Theory Applications, 11 (15), pp. 2514-2520Gil-Gonzlez, W.J., Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Output voltage regulation for DCdc buck converters: A passivitybased pi design (2019) 2019 IEEE 10th Latin American Symposium on Circuits Systems (LASCAS), pp. 189-192. , FebLinares-Flores, J., Barahona-Avalos, J.L., Sira-Ramirez, H., Contreras-Ordaz, M.A., Robust passivity-based control of a buckboost-converter/dc-motor system: An active disturbance rejection approach (2012) IEEE Trans. Ind. Appl., 48 (6), pp. 2362-2371. , NovLing, R., Maksimovic, D., Leyva, R., Second-order sliding-mode controlled synchronous buck DCdc converter (2016) IEEE Trans. Power Electron., 31 (3), pp. 2539-2549. , MarchMa, L., Zhang, Y., Yang, X., Ding, S., Dong, L., Quasi-continuous second-order sliding mode control of buck converter (2018) IEEE Access, 6 (859), p. 17. , 17 867Alvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P., Morales, A., A stable design of pi control for DC-DC converters with an rhs zero (2001) IEEE Trans. Circuits Syst. i, 48 (1), pp. 103-106. , JanTsai, C., Chen, B., Li, H., Switching frequency stabilization techniques for adaptive on-Time controlled buck converter with adaptive voltage positioning mechanism (2016) IEEE Trans. Power Electron., 31 (1), pp. 443-451. , JanGuo, L., Hung, J.Y., Nelms, R.M., Evaluation of dsp-based pid and fuzzy controllers for DCdc converters (2009) IEEE Trans. Ind. Electron., 56 (6), pp. 2237-2248. , JuneAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel sine-cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343Yang, B., Yu, T., Zhang, X., Huang, L., Shu, H., Jiang, L., Interactive teachinglearning optimiser for parameter tuning of vsc-hvdc systems with offshore wind farm integration (2018) IET Generation, Transmission Distribution, 12 (3), pp. 678-687Huynh, T.-H., A modified shuffled frog leaping algorithm for optimal tuning of multivariable pid controllers (2008) 2008 IEEE International Conference on Industrial Technology, pp. 1-6. , AprilSerra, F., Magaldi, G., Martin Fernandez, L., Guillermo, L., De Angelo, C., Ida-pbc controller of a DC-DC boost converter for continuous and discontinuous conduction mode (2018) IEEE Latin America Transactions, 16 (1), pp. 52-58. , JanMagaldi, G.L., Serra, F.M., Martin Fernandez, L.L., Larregay, G.O., De Angelo, Y.C., Control of an isolated DC microgrid supplying constant power load (2018) 2018 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1-7. , JuneOrtega, R., Van Der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Cisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with limited control authority (2013) IEEE Journal of Emerging and Selected Topics in Power Electronics, 1 (4), pp. 247-259. , DecKhalil, H., (2013) Nonlinear Systems, Ser. Always Learning., , Pearson Education, LimitedMahto, T., Mukherjee, V., Evolutionary optimization technique for comparative analysis of different classical controllers for an isolated winddiesel hybrid power system (2016) Swarm Evol. Comput., 26, pp. 120-136Guha, D., Roy, P.L., Banerjee, S., Optimal tuning of 3 degree-offreedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm (2018) Comput. Electr. Eng., 72, pp. 137-153http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9039/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9039oai:repositorio.utb.edu.co:20.500.12585/90392023-05-26 10:23:33.979Repositorio Institucional UTBrepositorioutb@utb.edu.co |