PBC approach applied on a DC-DC step-down converter for providing service to CPLs

This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9039
Acceso en línea:
https://hdl.handle.net/20.500.12585/9039
Palabra clave:
Asymptotic stability
Constant power loads
Hamiltonian models
Output voltage regulation
Passivity-based control
Asymptotic stability
Automation
Controllers
Process control
Productivity
Three term control systems
Voltage regulators
Constant power load
Constant power loads (CPL)
Conventional pid
Hamiltonian models
Numerical results
Output voltage regulation
Passivity based control
Step-down converter
DC-DC converters
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ddd5f15dadb5dd7d22d653a0e7a28fb7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9039
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv PBC approach applied on a DC-DC step-down converter for providing service to CPLs
title PBC approach applied on a DC-DC step-down converter for providing service to CPLs
spellingShingle PBC approach applied on a DC-DC step-down converter for providing service to CPLs
Asymptotic stability
Constant power loads
Hamiltonian models
Output voltage regulation
Passivity-based control
Asymptotic stability
Automation
Controllers
Process control
Productivity
Three term control systems
Voltage regulators
Constant power load
Constant power loads (CPL)
Conventional pid
Hamiltonian models
Numerical results
Output voltage regulation
Passivity based control
Step-down converter
DC-DC converters
title_short PBC approach applied on a DC-DC step-down converter for providing service to CPLs
title_full PBC approach applied on a DC-DC step-down converter for providing service to CPLs
title_fullStr PBC approach applied on a DC-DC step-down converter for providing service to CPLs
title_full_unstemmed PBC approach applied on a DC-DC step-down converter for providing service to CPLs
title_sort PBC approach applied on a DC-DC step-down converter for providing service to CPLs
dc.contributor.editor.none.fl_str_mv Garcia-Tirado J.
Munoz-Durango D.
Alvarez H.
Botero-Castro H.
dc.subject.keywords.none.fl_str_mv Asymptotic stability
Constant power loads
Hamiltonian models
Output voltage regulation
Passivity-based control
Asymptotic stability
Automation
Controllers
Process control
Productivity
Three term control systems
Voltage regulators
Constant power load
Constant power loads (CPL)
Conventional pid
Hamiltonian models
Numerical results
Output voltage regulation
Passivity based control
Step-down converter
DC-DC converters
topic Asymptotic stability
Constant power loads
Hamiltonian models
Output voltage regulation
Passivity-based control
Asymptotic stability
Automation
Controllers
Process control
Productivity
Three term control systems
Voltage regulators
Constant power load
Constant power loads (CPL)
Conventional pid
Hamiltonian models
Numerical results
Output voltage regulation
Passivity based control
Step-down converter
DC-DC converters
description This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in this nonlinear load a passivity-based control (PBC) approach is proposed. The main advantage of the proposed control approach corresponds to the parametric independence of the controller, even if the CPL and the asymptotic stability in the sense of Lyapunov are unknown. Numerical results validate the proposed control approach in comparison to conventional PID controller. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:49Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:49Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings
dc.identifier.isbn.none.fl_str_mv 9781538669624
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9039
dc.identifier.doi.none.fl_str_mv 10.1109/CCAC.2019.8920944
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
37104976300
57190661793
identifier_str_mv 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings
9781538669624
10.1109/CCAC.2019.8920944
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
37104976300
57190661793
url https://hdl.handle.net/20.500.12585/9039
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 15 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077954097&doi=10.1109%2fCCAC.2019.8920944&partnerID=40&md5=0a22a7d107d63f171128788ef368922a
Scopus2-s2.0-85077954097
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 4th IEEE Colombian Conference on Automatic Control, CCAC 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9039/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021693371318272
spelling Garcia-Tirado J.Munoz-Durango D.Alvarez H.Botero-Castro H.Montoya O.D.Gil-González, WalterSerra F.M.Magaldi G.2020-03-26T16:32:49Z2020-03-26T16:32:49Z20194th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings9781538669624https://hdl.handle.net/20.500.12585/903910.1109/CCAC.2019.8920944Universidad Tecnológica de BolívarRepositorio UTB56919564100571914936483710497630057190661793This paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in this nonlinear load a passivity-based control (PBC) approach is proposed. The main advantage of the proposed control approach corresponds to the parametric independence of the controller, even if the CPL and the asymptotic stability in the sense of Lyapunov are unknown. Numerical results validate the proposed control approach in comparison to conventional PID controller. © 2019 IEEE.Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Universidad Nacional de San Luis, UNSL: PROICO 142318, PICT-2017-0794 National Council for Scientific Research, NCSR Consejo Nacional de Investigaciones Científicas y Técnicas, CONICETColombian Conference on Automatic Control (CCAC);IEEE;IEEE Colombia;IEEE Colombian Chapter (CSS)This work was supported in part by the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, by the Universidad Tecnológica de Bolívar under Project C2018P020, by the National Council of Scientific and Technical Research (CONICET) and by Universidad Nacional de San Luis (UNSL) under Project PROICO 142318 and PICT-2017-0794.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077954097&doi=10.1109%2fCCAC.2019.8920944&partnerID=40&md5=0a22a7d107d63f171128788ef368922aScopus2-s2.0-850779540974th IEEE Colombian Conference on Automatic Control, CCAC 2019PBC approach applied on a DC-DC step-down converter for providing service to CPLsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAsymptotic stabilityConstant power loadsHamiltonian modelsOutput voltage regulationPassivity-based controlAsymptotic stabilityAutomationControllersProcess controlProductivityThree term control systemsVoltage regulatorsConstant power loadConstant power loads (CPL)Conventional pidHamiltonian modelsNumerical resultsOutput voltage regulationPassivity based controlStep-down converterDC-DC converters15 October 2019 through 18 October 2019Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Kumar, D., Zare, F., Ghosh, A., Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects (2017) IEEE Access, 5 (230), p. 12. , 12 256Solsona, J., Gomez Jorge, S., Busada, C., Nonlinear control of a buck converter feeding a constant power load (2014) IEEE Latin America Transactions, 12 (5), pp. 899-903. , AugAl-Nussairi, M., Bayindir, R., Padmanaban, S., Mihet-Popa, L., Siano, P., Constant power loads (cpl) with microgrids: Problem definition, stability analysis and compensation techniques (2017) Energies, 10 (1656), pp. 1-20. , JunHassan, M.A., Li, E., Li, X., Li, T., Duan, C., Chi, S., Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems (2018) IEEE Journal of Emerging and Selected Topics in Power Electronics, p. 1Microcontroller based bidirectional buckboost converter for photo-voltaic power plant (2018) J. Electr. Syst. Inf. Technol., 5 (3), pp. 745-758. , V. V. and V. S. R. RDi Piazza, M.C., Pucci, M., Ragusa, A., Vitale, G., Analytical versus neural real-Time simulation of a photovoltaic generator based on a DC-DC converter (2010) IEEE Trans. Ind. Appl., 46 (6), pp. 2501-2510. , NovMontoya, O.D., Garcés, A., Ortega-Velázquez, I., Espinosa-Pérez, G.R., Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. , AprilHerrera, L., Zhang, W., Wang, J., Stability analysis and controller design of DC microgrids with constant power loads (2017) IEEE Trans. Smart Grid, 8 (2), pp. 881-888. , MarchSimpson-Porco, J.W., Drfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815. , AugSingh, S., Gautam, A.R., Fulwani, D., Constant power loads and their effects in DC distributed power systems: A review (2017) Renewable Sustainable Energy Rev., 72, pp. 407-421Cavanini, L., Cimini, G., Ippoliti, G., Bemporad, A., Model predictive control for pre-compensated voltage mode controlled DCdc converters (2017) IET Control Theory Applications, 11 (15), pp. 2514-2520Gil-Gonzlez, W.J., Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Output voltage regulation for DCdc buck converters: A passivitybased pi design (2019) 2019 IEEE 10th Latin American Symposium on Circuits Systems (LASCAS), pp. 189-192. , FebLinares-Flores, J., Barahona-Avalos, J.L., Sira-Ramirez, H., Contreras-Ordaz, M.A., Robust passivity-based control of a buckboost-converter/dc-motor system: An active disturbance rejection approach (2012) IEEE Trans. Ind. Appl., 48 (6), pp. 2362-2371. , NovLing, R., Maksimovic, D., Leyva, R., Second-order sliding-mode controlled synchronous buck DCdc converter (2016) IEEE Trans. Power Electron., 31 (3), pp. 2539-2549. , MarchMa, L., Zhang, Y., Yang, X., Ding, S., Dong, L., Quasi-continuous second-order sliding mode control of buck converter (2018) IEEE Access, 6 (859), p. 17. , 17 867Alvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P., Morales, A., A stable design of pi control for DC-DC converters with an rhs zero (2001) IEEE Trans. Circuits Syst. i, 48 (1), pp. 103-106. , JanTsai, C., Chen, B., Li, H., Switching frequency stabilization techniques for adaptive on-Time controlled buck converter with adaptive voltage positioning mechanism (2016) IEEE Trans. Power Electron., 31 (1), pp. 443-451. , JanGuo, L., Hung, J.Y., Nelms, R.M., Evaluation of dsp-based pid and fuzzy controllers for DCdc converters (2009) IEEE Trans. Ind. Electron., 56 (6), pp. 2237-2248. , JuneAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel sine-cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343Yang, B., Yu, T., Zhang, X., Huang, L., Shu, H., Jiang, L., Interactive teachinglearning optimiser for parameter tuning of vsc-hvdc systems with offshore wind farm integration (2018) IET Generation, Transmission Distribution, 12 (3), pp. 678-687Huynh, T.-H., A modified shuffled frog leaping algorithm for optimal tuning of multivariable pid controllers (2008) 2008 IEEE International Conference on Industrial Technology, pp. 1-6. , AprilSerra, F., Magaldi, G., Martin Fernandez, L., Guillermo, L., De Angelo, C., Ida-pbc controller of a DC-DC boost converter for continuous and discontinuous conduction mode (2018) IEEE Latin America Transactions, 16 (1), pp. 52-58. , JanMagaldi, G.L., Serra, F.M., Martin Fernandez, L.L., Larregay, G.O., De Angelo, Y.C., Control of an isolated DC microgrid supplying constant power load (2018) 2018 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1-7. , JuneOrtega, R., Van Der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Cisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with limited control authority (2013) IEEE Journal of Emerging and Selected Topics in Power Electronics, 1 (4), pp. 247-259. , DecKhalil, H., (2013) Nonlinear Systems, Ser. Always Learning., , Pearson Education, LimitedMahto, T., Mukherjee, V., Evolutionary optimization technique for comparative analysis of different classical controllers for an isolated winddiesel hybrid power system (2016) Swarm Evol. Comput., 26, pp. 120-136Guha, D., Roy, P.L., Banerjee, S., Optimal tuning of 3 degree-offreedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm (2018) Comput. Electr. Eng., 72, pp. 137-153http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9039/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9039oai:repositorio.utb.edu.co:20.500.12585/90392023-05-26 10:23:33.979Repositorio Institucional UTBrepositorioutb@utb.edu.co