Large scale integration of renewable energy sources (RES) in the future Colombian energy system

The diversification of the energy matrix, including larger shares of Renewable Energy Sources (RES), is a significant part of the Colombian energy strategy towards a sustainable and more secure energy system. Historically, the country has relied on the intensive use of hydropower and fossil fuels as...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8895
Acceso en línea:
https://hdl.handle.net/20.500.12585/8895
Palabra clave:
Colombia
Energy system analysis
EnergyPLAN
RES
Electric power systems
Fossil fuels
Natural resources
Rhenium
Colombia
Electricity sector
Emission intensity
Energy system analysis
EnergyPLAN
Reference modeling
Renewable energy source
Scale integration
Renewable energy resources
Alternative energy
Bioenergy
Electrical power
Energy efficiency
Energy resource
Exploration
Fuel consumption
Long-term change
Numerical model
Sustainability
Sustainable development
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_dc29286a043819a44407fdb9391aced5
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8895
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Large scale integration of renewable energy sources (RES) in the future Colombian energy system
title Large scale integration of renewable energy sources (RES) in the future Colombian energy system
spellingShingle Large scale integration of renewable energy sources (RES) in the future Colombian energy system
Colombia
Energy system analysis
EnergyPLAN
RES
Electric power systems
Fossil fuels
Natural resources
Rhenium
Colombia
Electricity sector
Emission intensity
Energy system analysis
EnergyPLAN
Reference modeling
Renewable energy source
Scale integration
Renewable energy resources
Alternative energy
Bioenergy
Electrical power
Energy efficiency
Energy resource
Exploration
Fuel consumption
Long-term change
Numerical model
Sustainability
Sustainable development
title_short Large scale integration of renewable energy sources (RES) in the future Colombian energy system
title_full Large scale integration of renewable energy sources (RES) in the future Colombian energy system
title_fullStr Large scale integration of renewable energy sources (RES) in the future Colombian energy system
title_full_unstemmed Large scale integration of renewable energy sources (RES) in the future Colombian energy system
title_sort Large scale integration of renewable energy sources (RES) in the future Colombian energy system
dc.subject.keywords.none.fl_str_mv Colombia
Energy system analysis
EnergyPLAN
RES
Electric power systems
Fossil fuels
Natural resources
Rhenium
Colombia
Electricity sector
Emission intensity
Energy system analysis
EnergyPLAN
Reference modeling
Renewable energy source
Scale integration
Renewable energy resources
Alternative energy
Bioenergy
Electrical power
Energy efficiency
Energy resource
Exploration
Fuel consumption
Long-term change
Numerical model
Sustainability
Sustainable development
topic Colombia
Energy system analysis
EnergyPLAN
RES
Electric power systems
Fossil fuels
Natural resources
Rhenium
Colombia
Electricity sector
Emission intensity
Energy system analysis
EnergyPLAN
Reference modeling
Renewable energy source
Scale integration
Renewable energy resources
Alternative energy
Bioenergy
Electrical power
Energy efficiency
Energy resource
Exploration
Fuel consumption
Long-term change
Numerical model
Sustainability
Sustainable development
description The diversification of the energy matrix, including larger shares of Renewable Energy Sources (RES), is a significant part of the Colombian energy strategy towards a sustainable and more secure energy system. Historically, the country has relied on the intensive use of hydropower and fossil fuels as the main energy sources. Colombia has a huge renewables potential, and therefore the exploration of different pathways for their integration is required. The aim of this study was to build a model for a country with a hydro-dominated electric power system and analyse the impacts of integrated variable RES in long-term future scenarios. EnergyPLAN was the modelling tool employed for simulating the reference year and future alternatives. Initially, the reference model was validated, and successively five different scenarios were built. The results show that an increase in the shares of wind, solar and bioenergy could achieve an approximate reduction of 20% in both the CO2 emissions and the total fuel consumption of the country by 2030. Further, in the electricity sector the best-case scenario could allow an estimated 60% reduction in its emission intensity. © 2019 Elsevier Ltd
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:34Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:34Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Energy; Vol. 186
dc.identifier.issn.none.fl_str_mv 03605442
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8895
dc.identifier.doi.none.fl_str_mv 10.1016/j.energy.2019.07.135
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57211364524
55609096600
35560744900
7202448730
7004225021
identifier_str_mv Energy; Vol. 186
03605442
10.1016/j.energy.2019.07.135
Universidad Tecnológica de Bolívar
Repositorio UTB
57211364524
55609096600
35560744900
7202448730
7004225021
url https://hdl.handle.net/20.500.12585/8895
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073648831&doi=10.1016%2fj.energy.2019.07.135&partnerID=40&md5=80f7b7aee06f9992811d0e116140325a
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8895/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021549848526848
spelling 2020-03-26T16:32:34Z2020-03-26T16:32:34Z2019Energy; Vol. 18603605442https://hdl.handle.net/20.500.12585/889510.1016/j.energy.2019.07.135Universidad Tecnológica de BolívarRepositorio UTB57211364524556090966003556074490072024487307004225021The diversification of the energy matrix, including larger shares of Renewable Energy Sources (RES), is a significant part of the Colombian energy strategy towards a sustainable and more secure energy system. Historically, the country has relied on the intensive use of hydropower and fossil fuels as the main energy sources. Colombia has a huge renewables potential, and therefore the exploration of different pathways for their integration is required. The aim of this study was to build a model for a country with a hydro-dominated electric power system and analyse the impacts of integrated variable RES in long-term future scenarios. EnergyPLAN was the modelling tool employed for simulating the reference year and future alternatives. Initially, the reference model was validated, and successively five different scenarios were built. The results show that an increase in the shares of wind, solar and bioenergy could achieve an approximate reduction of 20% in both the CO2 emissions and the total fuel consumption of the country by 2030. Further, in the electricity sector the best-case scenario could allow an estimated 60% reduction in its emission intensity. © 2019 Elsevier LtdThis research was supported by the Fundación CEIBA - Gobernación de Bolívar through the program “Bolivar gana con ciencia”. We thank our colleague Mauro Gonzalez, from TEBSA, who provided his insights and expertise that greatly assisted this work. We also thank IDEAM for providing their weather station data. AFOLU Agriculture, Forestry and Other Land Use BaU Business as Usual CEEP Critical Excess of Electricity Production CEPAL Economic Commission for Latin America and the Caribbean COMP Compromise Coefficient COP Conference of the parties ENSO El Niño and La Niña southern oscillation EPPA Economic Projection and Policy Analysis GDP Gross Domestic Product GHG Greenhouse gases IDEAM Hydrology, meteorology and environmental institute IEA International Energy Agency iNDC Intended Nationally Determined Contributions IPCC Intergovernmental Panel for Climate Change IPPU Industrial Products and Product Use ISA Interconexión eléctrica S.A. (Electric interconnection company) LEAP Long-range Energy Alternatives Planning OSeMOSYS Open Source Energy Modelling System PES Primary Energy Supply PV Photovoltaics RES Renewable Energy Sources SIEL Colombian Electrical Information System SIN National Interconnected System tCO 2 e ton of CO 2 equivalent TPES Total primary energy supply UPME Unidad de Planeación Minero Energética (Mining and Energy Planning Unit) VRS Variable Renewable Source XM Compañía de Expertos en Mercados (Market experts company) ZNI Not-Interconnected ZonesRecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073648831&doi=10.1016%2fj.energy.2019.07.135&partnerID=40&md5=80f7b7aee06f9992811d0e116140325aLarge scale integration of renewable energy sources (RES) in the future Colombian energy systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1ColombiaEnergy system analysisEnergyPLANRESElectric power systemsFossil fuelsNatural resourcesRheniumColombiaElectricity sectorEmission intensityEnergy system analysisEnergyPLANReference modelingRenewable energy sourceScale integrationRenewable energy resourcesAlternative energyBioenergyElectrical powerEnergy efficiencyEnergy resourceExplorationFuel consumptionLong-term changeNumerical modelSustainabilitySustainable developmentPupo-Roncallo O.Campillo Jiménez, Javier EduardoIngham, D.Hughes K.Pourkashanian M.Ang, B.W., Choong, W.L., Ng, T.S., Energy security : definitions, dimensions and indexes (2015) Renew Sustain Energy Rev, 42, pp. 1077-1093Harnessing variable renewables (2012)Planning for the renewable future (2017)Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., A review of computer tools for analysing the integration of renewable energy into various energy systems (2010) Appl Energy, 87, pp. 1059-1082Batlle, C., Paredes, J.R., Análisis del impacto del incremento de la generación de energía renovable no convencional en los sistemas eléctricos latinoamericanos (2014), Washington, D.C., USAde Moura, G.N.P., Legey, L.F.L., Howells, M., A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: a cooperative games approach (2018) Energy Policy, 115, pp. 470-485Octaviano, C., Paltsev, S., Gurgel, A.C., Climate change policy in Brazil and Mexico: results from the MIT EPPA model (2016) Energy Econ, 56, pp. 600-614(2017) Colombian electrical information system (SIEL), , http://www.siel.gov.co/, (Accessed 24 July 2018)Schmidt, J., Cancella, R., Pereira, A.O., The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system (2016) Energy, 115, pp. 1748-1757Schmidt, J., Cancella, R., Pereira, A.O., An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil (2016) Renew Energy, 85, pp. 137-147Hagos, D.A., Gebremedhin, A., Zethraeus, B., Towards a flexible energy system – a case study for Inland Norway (2014) Appl Energy, 130, pp. 41-50Mason, I.G., Page, S.C., Williamson, A.G.A., 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources (2010) Energy Policy, 38, pp. 3973-3984Integración de las energías renovables no convencionales en Colombia (2015), BogotaVergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., Benoit, P., Wind energy in Colombia (2010), The World BankGonzalez-Salazar, M., Venturini, M., Poganietz, W.-R., Finkenrath, M., Acevedo, H., Kirsten, T., Bioenergy technology roadmap for Colombia (2014)Paez, A.F., Maldonado, Y.M., Castro, A.O., Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning (2017) Int J Energy Econ Policy, 7, pp. 178-190Chavez-Rodriguez, M.F., Carvajal, P.E., Martinez Jaramillo, J.E., Egüez, A., Mahecha, R.E.G., Schaeffer, R., Fuel saving strategies in the Andes: long-term impacts for Peru, Colombia and Ecuador (2018) Energy Strateg Rev, 20, pp. 35-48Calderón, S., Alvarez, A., Loboguerrero, A., Arango, S., Calvin, K., Kober, T., Achieving CO2 reductions in Colombia: effects of carbon taxes and abatement targets (2016) Energy Econ, 56, pp. 575-586Østergaard, P.A., Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations (2015) Appl Energy, 154, pp. 921-933Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., The first step towards a 100% renewable energy-system for Ireland (2011) Appl Energy, 88, pp. 502-507Colombian energy balance (2018), http://www1.upme.gov.co/InformacionCifras/Paginas/BECOCONSULTA.aspx, (Accessed 9 July 2018)(2011) Mining and Energy Planning Unit (UPME). Actualización y Revisión de los Balances Energéticos Nacionales de Colombia 1975–2009. Tomo I - balances Energéticos Nacionales, , UPME BogotaEnergy balances of non-OECD countries 2015 (2015), International Energy Agency Paris(2017) Mining and energy planning unit (UPME). Plan de Expansión de Referencia generación transmisión 2017-2031, , BogotaOECD environmental performance reviews: Colombia 2014 (2014), OECD Publishing ParisEspinasa, R., Sucre, C., Gutierrez, M., Anaya, F., Dossier energetico: Colombia (2017), Washington, D.C., USAEnergy access outlook 2017: from poverty to prosperity (2017), OECD ParisMorales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., Pacheco, L., An overview of small hydropower plants in Colombia: status, potential, barriers and perspectives (2015) Renew Sustain Energy Rev, 50, pp. 1650-1657Macias, A.M., Andrade, J., Estudio de generación bajo escenarios de cambio climatico (2014), BogotaVargas, L., Jimenez-Estevez, G., Dias, M., Calfucoy, P., Barrera, M., Barrita, F., Comparative analysis of institutional and technical conditions relevant for the integration of renewable energy in South America (2014), REGSAGómez-Navarro, T., Ribó-Pérez, D., Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia (2018) Renew Sustain Energy Rev, 90, pp. 131-141World energy outlook 2017 (2017), OECD Publishing ParisCORPOEMA – UPME, (2010) Formulación de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PDFNCE), 1. , First. Bogotá: Mining and Energy Planning Unit (UPME)Edsand, H.-E., Identifying barriers to wind energy diffusion in Colombia: a function analysis of the technological innovation system and the wider context (2017) Technol Soc, 49, pp. 1-15Alternativas para la inclusión de FNCER en la matriz energética colombiana (2017)Atlas de viento de Colombia (2017), BogotáRodríguez-Urrego, D., Rodríguez-Urrego, L., Photovoltaic energy in Colombia: current status, inventory, policies and future prospects (2018) Renew Sustain Energy Rev, 92, pp. 160-170Atlas de radiación solar, ultravioleta y ozono de Colombia (2017), BogotáRadomes, A.A., Arango, S., Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia (2015) J Clean Prod, 92, pp. 152-161Ministry of Mines and Energy (MME), Programa de Biocombustibles en Colombia (2007), BogotáEnvironment and Sustainable Development Ministry (MADS), Upstream analytical work to support development of policy options for mid- and long-term mitigation objectives in Colombia (2016), BogotaOlaya, Y., Arango-Aramburo, S., Larsen, E.R., How capacity mechanisms drive technology choice in power generation: the case of Colombia (2016) Renew Sustain Energy Rev, 56, pp. 563-571Primer, I.D.E.A.M., Informe Bienal de Actualización de Colombia (2015) BogotaRomán, R., Cansino, J.M., Rodas, J.A., Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications (2018) Renew Energy, 116, pp. 402-411CO2 emissions from fuel combustion 2017 (2017), OECD Publishing ParisIDEAM, P.N.U.D., DNP, C., Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia (2016), Bogotá D.C., ColombiaGargiulo, M., Gallachóir, B.Ó., Long-term energy models: principles, characteristics, focus, and limitations (2013) Wiley Interdiscip Rev Energy Environ, 2, pp. 158-177Deane, J.P., Chiodi, A., Gargiulo, M., Ó Gallachóir, B.P., Soft-linking of a power systems model to an energy systems model (2012) Energy, 42, pp. 303-312Lund, H., EnergyPLAN - advanced energy systems analysis computer model https://www.energyplan.eu/, n.d. (Accessed 27 July 2018)Edmunds, R.K., Cockerill, T.T., Foxon, T.J., Ingham, D.B., Pourkashanian, M., Technical benefits of energy storage and electricity interconnections in future British power systems (2014) Energy, 70, pp. 577-587Dranka, G.G., Ferreira, P., Planning for a renewable future in the Brazilian power system (2018) Energy, 164, pp. 496-511Lund, H., Renewable energy systems: a smart energy systems approach to the choice and modeling of 100% renewable solutions (2014), second ed. Ringgold Inc. Amsterdam: BeavertonLund, H., Mathiesen, B.V., Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050 (2009) Energy, 34, pp. 524-531Connolly, D., The integration of fluctuating renewable energy using energy storage (2010), University of LimerickDorotić, H., Doračić, B., Dobravec, V., Pukšec, T., Krajačić, G., Duić, N., Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources (2019) Renew Sustain Energy Rev, 99, pp. 109-124Bellocchi, S., Gambini, M., Manno, M., Stilo, T., Vellini, M., Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: the Italian case (2018) Energy, 161, pp. 172-182Pfeifer, A., Dobravec, V., Pavlinek, L., Krajačić, G., Duić, N., Integration of renewable energy and demand response technologies in interconnected energy systems (2018) Energy, 161, pp. 447-455Connolly, D., Finding and inputting data into the EnergyPLAN tool (2015), AalborgXM. Portal, BI - gestión información inteligente http://informacioninteligente10.xm.com.co/pages/default.aspx, n.d (Accessed 30 July 2018)George, M., Banerjee, R., A methodology for analysis of impacts of grid integration of renewable energy (2011) Energy Policy, 39, pp. 1265-1276IPCC guidelines for national greenhouse gas inventories, intergovernmental Panel on climate change (IPCC), task force on national greenhouse gas inventories (TFI) https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, n.d (Accessed 28 September 2018)Emission factor database (EFDB) https://www.ipcc-nggip.iges.or.jp/EFDB/main.php, n.d (Accessed 28 September 2018)Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible (2010) Energy, 35, pp. 2164-2173CO2 emissions from fuel combustion (2016), 2016Energy balances (2016), Edition 2016You, W., Geng, Y., Dong, H., Wilson, J., Pan, H., Wu, R., Technical and economic assessment of RES penetration by modelling China's existing energy system (2018) Energy, 165, pp. 900-910(2013) Panorama del cambio climático en Colombia, 146. , Santiagohttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8895/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8895oai:repositorio.utb.edu.co:20.500.12585/88952023-05-25 14:58:45.139Repositorio Institucional UTBrepositorioutb@utb.edu.co