Dynamic analysis of shear deformable plates using the dual reciprocity method
The Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamen...
- Autores:
-
Useche, J.
Albuquerque, E.L.
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12120
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12120
- Palabra clave:
- Boundary Element Method;
Sailing Vessels;
Insulator Elements
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_db9d967c8b658fad9ac21d0db5da29ad |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12120 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
title |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
spellingShingle |
Dynamic analysis of shear deformable plates using the dual reciprocity method Boundary Element Method; Sailing Vessels; Insulator Elements LEMB |
title_short |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
title_full |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
title_fullStr |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
title_full_unstemmed |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
title_sort |
Dynamic analysis of shear deformable plates using the dual reciprocity method |
dc.creator.fl_str_mv |
Useche, J. Albuquerque, E.L. |
dc.contributor.author.none.fl_str_mv |
Useche, J. Albuquerque, E.L. |
dc.subject.keywords.spa.fl_str_mv |
Boundary Element Method; Sailing Vessels; Insulator Elements |
topic |
Boundary Element Method; Sailing Vessels; Insulator Elements LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamental solution of the problem. In this work, this approach was applied for the dynamic analysis of shear deformable plates based on the Reissner plate bending theory, considering the rotary inertia of the plate. Three kinds of problems: modal, harmonic and transient dynamic analysis, were analyzed. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2011 Elsevier Ltd. All rights reserved |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2023-07-18T19:22:10Z |
dc.date.available.none.fl_str_mv |
2023-07-18T19:22:10Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12120 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.enganabound.2011.12.006 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632. 10.1016/j.enganabound.2011.12.006 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12120 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
5 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Engineering Analysis with Boundary Elements |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/1/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/4/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/5/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.jpg |
bitstream.checksum.fl_str_mv |
3afb225280a66fb6f77276969faf00fe 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 0445950e74bee155cc3164b75f63f99a abdd982bf0044dae092c3cad9774dfd5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021793795538944 |
spelling |
Useche, J.6bed9359-4992-4e29-b0a3-2604d9295474Albuquerque, E.L.27b573f2-c094-4a09-b195-bef5742e779c2023-07-18T19:22:10Z2023-07-18T19:22:10Z20122023Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632.https://hdl.handle.net/20.500.12585/1212010.1016/j.enganabound.2011.12.006Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamental solution of the problem. In this work, this approach was applied for the dynamic analysis of shear deformable plates based on the Reissner plate bending theory, considering the rotary inertia of the plate. Three kinds of problems: modal, harmonic and transient dynamic analysis, were analyzed. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2011 Elsevier Ltd. All rights reserved5 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Engineering Analysis with Boundary ElementsDynamic analysis of shear deformable plates using the dual reciprocity methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Boundary Element Method;Sailing Vessels;Insulator ElementsLEMBCartagena de IndiasDavies, T.W., Moslehy, F.A. Modal analysis of plates using the dual reciprocity boundary element method (1994) Engineering Analysis with Boundary Elements, 14 (4), pp. 357-362. Cited 13 times. doi: 10.1016/0955-7997(94)90066-3Dominguez, J. (1993) Boundary Elements in Dynamics. Cited 734 times. Computational Mechanics New YorkDuddeck, F.M. (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform. Cited 10 times. Springer New YorkHeuer, R., Ziegler, F. Vibrations of oblique shear-deformable plates (2003) Journal of Sound and Vibration, 263 (5), pp. 965-977. Cited 3 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/9/9/index.htt doi: 10.1016/S0022-460X(03)00268-2Kamiya, N., Sawaki, Y. The plate bending analysis by the dual reciprocity boundary elements (1988) Engineering Analysis, 5 (1), pp. 36-40. Cited 19 times. doi: 10.1016/0264-682X(88)90031-7Nardini, D., Brebbia, C.A. A new approach to free vibration analysis using boundary elements (1982) Boundary Elements Methods in Engineering, 26, pp. 312-326. Cited 421 times. C.A. Brebbia, Springer-Verlag BerlinPalermo Jr., L. On the harmonic response of plates with the shear deformation effect using the elastodynamic solution in the boundary element method (2007) Engineering Analysis with Boundary Elements, 31 (2), pp. 176-183. Cited 11 times. doi: 10.1016/j.enganabound.2006.08.003Partridge, P.W., Brebbia, C.A., Wrobel, L.C. (1992) The Dual Reciprocity Boundary Element Method. Cited 1015 times. Computational Mechanics Publications SouthamptonProvidakis, C.P., Beskos, D.E. Dynamic analysis of plates by boundary elements (1999) Applied Mechanics Reviews, 52 (7), pp. 213-236. Cited 53 times. doi: 10.1115/1.3098936Providakis, C.P., Beskos, D.E. Free and forced vibrations of plates by boundary elements (1989) Computer Methods in Applied Mechanics and Engineering, 74 (3), pp. 231-250. Cited 24 times. doi: 10.1016/0045-7825(89)90050-9Rashed, Y. (2000) Boundary Element Formulation for Thick Plates. Cited 18 times. WIT Press Southampton, BostoWeeën, F.V. Application of the boundary integral equation method to Reissner's plate model (1982) International Journal for Numerical Methods in Engineering, 18 (1), pp. 1-10. Cited 189 times. doi: 10.1002/nme.1620180102Weiss, O., Moshaiov, A. Vibration analysis of continuous plate structures using boundary integrals (1993) Computers and Structures, 47 (6), pp. 971-976. Cited 5 times. doi: 10.1016/0045-7949(93)90301-SWen, P.H., Aliabadi, M.H., Young, A. A boundary element method for dynamic plate bending problems (2000) International Journal of Solids and Structures, 37 (37), pp. 5177-5188. Cited 42 times. journals.elsevier.com/international-journal-of-solids-and-structures/ doi: 10.1016/S0020-7683(99)00187-0Wen, P.H., Aliabadi, M.H., Young, A. Application of dual reciprocity method to plates and shells (2000) Engineering Analysis with Boundary Elements, 24 (7-8), pp. 583-590. Cited 30 times. doi: 10.1016/S0955-7997(00)00038-2Wen, P.H., Aliabadi, M.H., Young, A. Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems (Open Access) (1999) Computational Mechanics, 24 (4), pp. 304-309. Cited 19 times. doi: 10.1007/s004660050519Wen, P.H., Aliabadi, M.H., Young, A. Boundary element analysis of flat cracked panels with adhesively bonded patches (2002) Engineering Fracture Mechanics, 69 (18), pp. 2129-2146. Cited 16 times. doi: 10.1016/S0013-7944(02)00012-7Wen, P.H., Aliabadi, M.H. Boundary element frequency domain formulation for dynamic analysis of Mindlin plates (2006) International Journal for Numerical Methods in Engineering, 67 (11), pp. 1617-1640. Cited 23 times. doi: 10.1002/nme.1676Wen, P.H., Adetoro, M., Xu, Y. The fundamental solution of Mindlin plates with damping in the Laplace domain and its applications (2008) Engineering Analysis with Boundary Elements, 32 (10), pp. 870-882. Cited 15 times. doi: 10.1016/j.enganabound.2007.12.005Wrobel, L.C., Aliabadi, M.H. (2002) The Boundary Element Method, Volume 2: Applications in Solid and Structures. Cited 1027 times. Wiley New YorkVictorovitch, M., Jezequel, L., Thouverez, F. A boundary element solution to the vibration problem of bidimensional structures on a wide frequency range (1995) Boundary Elements XVII, pp. 211-218. Cited 3 times. C.A. Brebbia, Computational Mechanics Publications Southamptonhttp://purl.org/coar/resource_type/c_6501ORIGINALDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdfDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdfapplication/pdf97469https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/1/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf3afb225280a66fb6f77276969faf00feMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.txtDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.txtExtracted texttext/plain1957https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/4/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.txt0445950e74bee155cc3164b75f63f99aMD54THUMBNAILDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.jpgDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.jpgGenerated Thumbnailimage/jpeg7002https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/5/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.jpgabdd982bf0044dae092c3cad9774dfd5MD5520.500.12585/12120oai:repositorio.utb.edu.co:20.500.12585/121202023-07-19 00:19:04.361Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |