Dynamic analysis of shear deformable plates using the dual reciprocity method

The Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamen...

Full description

Autores:
Useche, J.
Albuquerque, E.L.
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12120
Acceso en línea:
https://hdl.handle.net/20.500.12585/12120
Palabra clave:
Boundary Element Method;
Sailing Vessels;
Insulator Elements
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_db9d967c8b658fad9ac21d0db5da29ad
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12120
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Dynamic analysis of shear deformable plates using the dual reciprocity method
title Dynamic analysis of shear deformable plates using the dual reciprocity method
spellingShingle Dynamic analysis of shear deformable plates using the dual reciprocity method
Boundary Element Method;
Sailing Vessels;
Insulator Elements
LEMB
title_short Dynamic analysis of shear deformable plates using the dual reciprocity method
title_full Dynamic analysis of shear deformable plates using the dual reciprocity method
title_fullStr Dynamic analysis of shear deformable plates using the dual reciprocity method
title_full_unstemmed Dynamic analysis of shear deformable plates using the dual reciprocity method
title_sort Dynamic analysis of shear deformable plates using the dual reciprocity method
dc.creator.fl_str_mv Useche, J.
Albuquerque, E.L.
dc.contributor.author.none.fl_str_mv Useche, J.
Albuquerque, E.L.
dc.subject.keywords.spa.fl_str_mv Boundary Element Method;
Sailing Vessels;
Insulator Elements
topic Boundary Element Method;
Sailing Vessels;
Insulator Elements
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamental solution of the problem. In this work, this approach was applied for the dynamic analysis of shear deformable plates based on the Reissner plate bending theory, considering the rotary inertia of the plate. Three kinds of problems: modal, harmonic and transient dynamic analysis, were analyzed. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2011 Elsevier Ltd. All rights reserved
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:22:10Z
dc.date.available.none.fl_str_mv 2023-07-18T19:22:10Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12120
dc.identifier.doi.none.fl_str_mv 10.1016/j.enganabound.2011.12.006
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632.
10.1016/j.enganabound.2011.12.006
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12120
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 5 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Engineering Analysis with Boundary Elements
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/1/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/4/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/5/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.jpg
bitstream.checksum.fl_str_mv 3afb225280a66fb6f77276969faf00fe
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
0445950e74bee155cc3164b75f63f99a
abdd982bf0044dae092c3cad9774dfd5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021793795538944
spelling Useche, J.6bed9359-4992-4e29-b0a3-2604d9295474Albuquerque, E.L.27b573f2-c094-4a09-b195-bef5742e779c2023-07-18T19:22:10Z2023-07-18T19:22:10Z20122023Useche, J., & Albuquerque, E. L. (2012). Dynamic analysis of shear deformable plates using the Dual Reciprocity Method. Engineering Analysis with Boundary Elements, 36(5), 627-632.https://hdl.handle.net/20.500.12585/1212010.1016/j.enganabound.2011.12.006Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe Dual Reciprocity Method is a popular mathematical technique to treat domain integrals in the boundary element method (BEM). This technique has been used to treat inertial integrals in the dynamic thin plate bending analysis using a direct formulation of the BEM based on the elastostatic fundamental solution of the problem. In this work, this approach was applied for the dynamic analysis of shear deformable plates based on the Reissner plate bending theory, considering the rotary inertia of the plate. Three kinds of problems: modal, harmonic and transient dynamic analysis, were analyzed. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2011 Elsevier Ltd. All rights reserved5 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Engineering Analysis with Boundary ElementsDynamic analysis of shear deformable plates using the dual reciprocity methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Boundary Element Method;Sailing Vessels;Insulator ElementsLEMBCartagena de IndiasDavies, T.W., Moslehy, F.A. Modal analysis of plates using the dual reciprocity boundary element method (1994) Engineering Analysis with Boundary Elements, 14 (4), pp. 357-362. Cited 13 times. doi: 10.1016/0955-7997(94)90066-3Dominguez, J. (1993) Boundary Elements in Dynamics. Cited 734 times. Computational Mechanics New YorkDuddeck, F.M. (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform. Cited 10 times. Springer New YorkHeuer, R., Ziegler, F. Vibrations of oblique shear-deformable plates (2003) Journal of Sound and Vibration, 263 (5), pp. 965-977. Cited 3 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/9/9/index.htt doi: 10.1016/S0022-460X(03)00268-2Kamiya, N., Sawaki, Y. The plate bending analysis by the dual reciprocity boundary elements (1988) Engineering Analysis, 5 (1), pp. 36-40. Cited 19 times. doi: 10.1016/0264-682X(88)90031-7Nardini, D., Brebbia, C.A. A new approach to free vibration analysis using boundary elements (1982) Boundary Elements Methods in Engineering, 26, pp. 312-326. Cited 421 times. C.A. Brebbia, Springer-Verlag BerlinPalermo Jr., L. On the harmonic response of plates with the shear deformation effect using the elastodynamic solution in the boundary element method (2007) Engineering Analysis with Boundary Elements, 31 (2), pp. 176-183. Cited 11 times. doi: 10.1016/j.enganabound.2006.08.003Partridge, P.W., Brebbia, C.A., Wrobel, L.C. (1992) The Dual Reciprocity Boundary Element Method. Cited 1015 times. Computational Mechanics Publications SouthamptonProvidakis, C.P., Beskos, D.E. Dynamic analysis of plates by boundary elements (1999) Applied Mechanics Reviews, 52 (7), pp. 213-236. Cited 53 times. doi: 10.1115/1.3098936Providakis, C.P., Beskos, D.E. Free and forced vibrations of plates by boundary elements (1989) Computer Methods in Applied Mechanics and Engineering, 74 (3), pp. 231-250. Cited 24 times. doi: 10.1016/0045-7825(89)90050-9Rashed, Y. (2000) Boundary Element Formulation for Thick Plates. Cited 18 times. WIT Press Southampton, BostoWeeën, F.V. Application of the boundary integral equation method to Reissner's plate model (1982) International Journal for Numerical Methods in Engineering, 18 (1), pp. 1-10. Cited 189 times. doi: 10.1002/nme.1620180102Weiss, O., Moshaiov, A. Vibration analysis of continuous plate structures using boundary integrals (1993) Computers and Structures, 47 (6), pp. 971-976. Cited 5 times. doi: 10.1016/0045-7949(93)90301-SWen, P.H., Aliabadi, M.H., Young, A. A boundary element method for dynamic plate bending problems (2000) International Journal of Solids and Structures, 37 (37), pp. 5177-5188. Cited 42 times. journals.elsevier.com/international-journal-of-solids-and-structures/ doi: 10.1016/S0020-7683(99)00187-0Wen, P.H., Aliabadi, M.H., Young, A. Application of dual reciprocity method to plates and shells (2000) Engineering Analysis with Boundary Elements, 24 (7-8), pp. 583-590. Cited 30 times. doi: 10.1016/S0955-7997(00)00038-2Wen, P.H., Aliabadi, M.H., Young, A. Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems (Open Access) (1999) Computational Mechanics, 24 (4), pp. 304-309. Cited 19 times. doi: 10.1007/s004660050519Wen, P.H., Aliabadi, M.H., Young, A. Boundary element analysis of flat cracked panels with adhesively bonded patches (2002) Engineering Fracture Mechanics, 69 (18), pp. 2129-2146. Cited 16 times. doi: 10.1016/S0013-7944(02)00012-7Wen, P.H., Aliabadi, M.H. Boundary element frequency domain formulation for dynamic analysis of Mindlin plates (2006) International Journal for Numerical Methods in Engineering, 67 (11), pp. 1617-1640. Cited 23 times. doi: 10.1002/nme.1676Wen, P.H., Adetoro, M., Xu, Y. The fundamental solution of Mindlin plates with damping in the Laplace domain and its applications (2008) Engineering Analysis with Boundary Elements, 32 (10), pp. 870-882. Cited 15 times. doi: 10.1016/j.enganabound.2007.12.005Wrobel, L.C., Aliabadi, M.H. (2002) The Boundary Element Method, Volume 2: Applications in Solid and Structures. Cited 1027 times. Wiley New YorkVictorovitch, M., Jezequel, L., Thouverez, F. A boundary element solution to the vibration problem of bidimensional structures on a wide frequency range (1995) Boundary Elements XVII, pp. 211-218. Cited 3 times. C.A. Brebbia, Computational Mechanics Publications Southamptonhttp://purl.org/coar/resource_type/c_6501ORIGINALDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdfDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdfapplication/pdf97469https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/1/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf3afb225280a66fb6f77276969faf00feMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.txtDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.txtExtracted texttext/plain1957https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/4/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.txt0445950e74bee155cc3164b75f63f99aMD54THUMBNAILDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.jpgDynamic analysis of shear deformable plates using the Dual Reciprocity Method - ScienceDirect.pdf.jpgGenerated Thumbnailimage/jpeg7002https://repositorio.utb.edu.co/bitstream/20.500.12585/12120/5/Dynamic%20analysis%20of%20shear%20deformable%20plates%20using%20the%20Dual%20Reciprocity%20Method%20-%20ScienceDirect.pdf.jpgabdd982bf0044dae092c3cad9774dfd5MD5520.500.12585/12120oai:repositorio.utb.edu.co:20.500.12585/121202023-07-19 00:19:04.361Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=