A fixed-point current injection power flow for electric distribution systems using Laurent series

his paper proposes a new power flow (PF) formulation for electrical distribution systems using the current injection method and applying the Laurent series expansion. Two solution algorithms are proposed: a Newtonlike iterative procedure and a fixed-point iteration based on the successive approximat...

Full description

Autores:
Giraldo, Juan S
Montoya, Oscar Danilo
Vergara, Pedro P.
Milano, Federico
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11117
Acceso en línea:
https://hdl.handle.net/20.500.12585/11117
https://doi.org/10.1016/j.epsr.2022.108326
Palabra clave:
Current injection power flow
Laurent series
Fixed-point iteration
Three-phase systems
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_dae0f976fd1b540b62613501d661a403
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11117
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv A fixed-point current injection power flow for electric distribution systems using Laurent series
title A fixed-point current injection power flow for electric distribution systems using Laurent series
spellingShingle A fixed-point current injection power flow for electric distribution systems using Laurent series
Current injection power flow
Laurent series
Fixed-point iteration
Three-phase systems
LEMB
title_short A fixed-point current injection power flow for electric distribution systems using Laurent series
title_full A fixed-point current injection power flow for electric distribution systems using Laurent series
title_fullStr A fixed-point current injection power flow for electric distribution systems using Laurent series
title_full_unstemmed A fixed-point current injection power flow for electric distribution systems using Laurent series
title_sort A fixed-point current injection power flow for electric distribution systems using Laurent series
dc.creator.fl_str_mv Giraldo, Juan S
Montoya, Oscar Danilo
Vergara, Pedro P.
Milano, Federico
dc.contributor.author.none.fl_str_mv Giraldo, Juan S
Montoya, Oscar Danilo
Vergara, Pedro P.
Milano, Federico
dc.subject.keywords.es_CO.fl_str_mv Current injection power flow
Laurent series
Fixed-point iteration
Three-phase systems
topic Current injection power flow
Laurent series
Fixed-point iteration
Three-phase systems
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description his paper proposes a new power flow (PF) formulation for electrical distribution systems using the current injection method and applying the Laurent series expansion. Two solution algorithms are proposed: a Newtonlike iterative procedure and a fixed-point iteration based on the successive approximation method (SAM). The convergence analysis of the SAM is proven via the Banach fixed-point theorem, ensuring numerical stability, the uniqueness of the solution, and independence on the initializing point. Numerical results are obtained for both proposed algorithms and compared to well-known PF formulations considering their rate of convergence, computational time, and numerical stability. Tests are performed for different branch ����∕���� ratios, loading conditions, and initialization points in balanced and unbalanced networks with radial and weakly-meshed topologies. Results show that the SAM is computationally more efficient than the compared PFs, being more than ten times faster than the backward–forward sweep algorithm.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-23T21:29:42Z
dc.date.available.none.fl_str_mv 2022-09-23T21:29:42Z
dc.date.issued.none.fl_str_mv 2022-07-02
dc.date.submitted.none.fl_str_mv 2022-09-23
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.es_CO.fl_str_mv Giraldo, Juan & Montoya Giraldo, Oscar & Vergara, Pedro P. & Milano, Federico. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research. 211. 108326. 10.1016/j.epsr.2022.108326.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11117
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.epsr.2022.108326
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Giraldo, Juan & Montoya Giraldo, Oscar & Vergara, Pedro P. & Milano, Federico. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research. 211. 108326. 10.1016/j.epsr.2022.108326.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11117
https://doi.org/10.1016/j.epsr.2022.108326
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 Páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Elsevier - Electric Power Systems Research Vol. 211 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/1/1-s2.0-S0378779622005016-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/4/1-s2.0-S0378779622005016-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/5/1-s2.0-S0378779622005016-main.pdf.jpg
bitstream.checksum.fl_str_mv 555378a6319eebc55a527ef47ec63b59
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
ea892b1b55380fd85fb0afe5a562808b
9a5a5acaa2b60d308be4d69ab38f9f23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021617176543232
spelling Giraldo, Juan Scdb05d6f-8198-4d30-a1da-c459d1ba8989Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Vergara, Pedro P.e1e5e37d-7d37-411b-983f-47181da8f2beMilano, Federicoddddd610-f15f-4e6a-82f1-e81308b96fa62022-09-23T21:29:42Z2022-09-23T21:29:42Z2022-07-022022-09-23Giraldo, Juan & Montoya Giraldo, Oscar & Vergara, Pedro P. & Milano, Federico. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research. 211. 108326. 10.1016/j.epsr.2022.108326.https://hdl.handle.net/20.500.12585/11117https://doi.org/10.1016/j.epsr.2022.108326Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de Bolívarhis paper proposes a new power flow (PF) formulation for electrical distribution systems using the current injection method and applying the Laurent series expansion. Two solution algorithms are proposed: a Newtonlike iterative procedure and a fixed-point iteration based on the successive approximation method (SAM). The convergence analysis of the SAM is proven via the Banach fixed-point theorem, ensuring numerical stability, the uniqueness of the solution, and independence on the initializing point. Numerical results are obtained for both proposed algorithms and compared to well-known PF formulations considering their rate of convergence, computational time, and numerical stability. Tests are performed for different branch ����∕���� ratios, loading conditions, and initialization points in balanced and unbalanced networks with radial and weakly-meshed topologies. Results show that the SAM is computationally more efficient than the compared PFs, being more than ten times faster than the backward–forward sweep algorithm.8 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Elsevier - Electric Power Systems Research Vol. 211 (2022)A fixed-point current injection power flow for electric distribution systems using Laurent seriesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Current injection power flowLaurent seriesFixed-point iterationThree-phase systemsLEMBCartagena de IndiasBompard E., Carpaneto E., Chicco G., Napoli R. Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems Int. J. Electr. Power Energy Syst., 22 (7) (2000), pp. 521-530Milano F. Continuous Newton’s method for power flow analysis IEEE Trans. Power Syst., 24 (1) (2009), pp. 50-57Monticelli A., García A., Saavedra O.R. Fast decoupled load flow: hypothesis, derivations, and testing IEEE Trans. Power Syst., 5 (4) (1990), pp. 1425-1431Cheng C., Shirmohammadi D. A three-phase power flow method for real-time distribution system analysis IEEE Trans. Power Syst., 10 (2) (1995), pp. 671-679García P.A., Pereira J.L.R., Carneiro S., Da Costa V.M., Martins N. Three-phase power flow calculations using the current injection method IEEE Trans. Power Syst., 15 (2) (2000), pp. 508-514Tostado-Véliz M., Kamel S., Jurado F. Power flow solution of ill-conditioned systems using current injection formulation: Analysis and a novel method Int. J. Electr. Power Energy Syst., 127 (2021), Article 106669Milano F. Implicit continuous Newton method for power flow analysis IEEE Trans. Power Syst., 34 (4) (2019), pp. 3309-3311Braz L., Castro C., Murati C. A critical evaluation of step size optimization based load flow methods IEEE Trans. Power Syst., 15 (1) (2000), pp. 202-207Lagacé P.-J., Vuong M.-H., Kamwa I. Improving power flow convergence by Newton raphson with a levenberg-marquardt method 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE (2008), pp. 1-6Tostado-Véliz M., Kamel S., Jurado F. Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas Electr. Power Syst. Res., 174 (2019), Article 105881Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review Dover Publications (2000), pp. 187-220Garces A. A linear three-phase load flow for power distribution systems IEEE Trans. Power Syst., 31 (1) (2016), pp. 827-828O.D. Montoya, L.E. Rueda, W. Gil-González, A. Molina-Cabrera, H.R. Chamorro, M. Soleimani, On the power flow solution in AC distribution networks using the Laurent’s series expansion, in: 2021 IEEE Texas Power and Energy Conference, TPEC, 2-5 Feb. 2021, College Station, TX, USA, 2021.Bolognani S., Zampieri S. On the existence and linear approximation of the power flow solution in power distribution networks IEEE Trans. Power Syst., 31 (1) (2016), pp. 163-172Bazrafshan M., Gatsis N. Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads IEEE Trans. Power Syst., 33 (1) (2018), pp. 153-165Bernstein A., Wang C., Dall’Anese E., Le Boudec J.-Y., Zhao C. Load flow in multiphase distribution networks: Existence, uniqueness, non-singularity and linear models IEEE Trans. Power Syst., 33 (6) (2018), pp. 5832-5843Montoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454Guddanti K.P., Weng Y., Zhang B. A matrix-inversion-free fixed-point method for distributed power flow analysis IEEE Trans. Power Syst., 37 (1) (2022), pp. 653-665Montoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61Lin W.-M., Su Y.-S., Teng J.-H., Chen S.-J. A new building algorithm for Z-matrix PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings, Vol. 2, Cat. No. 00EX409, IEEE (2000), pp. 1041-1046Giraldo J.S. Current injection method using laurent series expansion (2022) https://github.com/juan-giraldo-ch/CIMLaurent.git.Kettner A.M., Paolone M. On the properties of the compound nodal admittance matrix of polyphase power systems IEEE Trans. Power Syst., 34 (1) (2019), pp. 444-453J.S. Giraldo, J.A. Castrillón, C.A. Castro, Robust and efficient voltage stability margin computation using synchrophasors, in: 2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5.Wang C., Bernstein A., Le Boudec J.-Y., Paolone M. Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks IEEE Trans. Smart Grid, 9 (2) (2018), pp. 953-962LaPSEE Power System Test Cases Repository UNESP C. Downloads / sistemas testes (2020)Mantovani J.R., Casari F., Romero R.A. Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão Controle Automação (2000), pp. 150-159F. Milano, A Python-based software tool for power system analysis, in: 2013 IEEE Power Energy Society General Meeting, 2013, pp. 1–5.Arif A., Wang Z., Wang J., Mather B., Bashualdo H., Zhao D. Load modeling—A review IEEE Trans. Smart Grid, 9 (6) (2018), pp. 5986-5999Elecrtrical Power System Research Institute A. Distributed PV monitoring and feeder analysis - Feeder K1 (2021) URL https://dpv.epri.com/feeder_k.htmlPOWER D. Polish system during morning peak conditions in summer of 2008 (2021) URL https://bit.ly/3D95QH9M. Salazar, J.S. Giraldo, P.P. Vergara, P. Nguyen, A. van der Molen, H. Slootweg, Community Energy Storage Operation via Reinforcement Learning with Eligibility Traces, in: 2022 Power Systems Computation Conference, PSCC, 2022, in press.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S0378779622005016-main.pdf1-s2.0-S0378779622005016-main.pdfapplication/pdf878286https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/1/1-s2.0-S0378779622005016-main.pdf555378a6319eebc55a527ef47ec63b59MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S0378779622005016-main.pdf.txt1-s2.0-S0378779622005016-main.pdf.txtExtracted texttext/plain44311https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/4/1-s2.0-S0378779622005016-main.pdf.txtea892b1b55380fd85fb0afe5a562808bMD54THUMBNAIL1-s2.0-S0378779622005016-main.pdf.jpg1-s2.0-S0378779622005016-main.pdf.jpgGenerated Thumbnailimage/jpeg2832https://repositorio.utb.edu.co/bitstream/20.500.12585/11117/5/1-s2.0-S0378779622005016-main.pdf.jpg9a5a5acaa2b60d308be4d69ab38f9f23MD5520.500.12585/11117oai:repositorio.utb.edu.co:20.500.12585/111172022-09-24 00:18:42.571Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=