Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings

Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations; this lack commonly leads to insufficient seismic strength. N...

Full description

Autores:
Villar-Salinas, Sergio
Pacheco Orozco, Sebastián
Carrillo, Julián
López-Almansa, Francisco
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12656
Acceso en línea:
https://hdl.handle.net/20.500.12585/12656
Palabra clave:
Axial Compression Ratio
Seismic Performance
Modal Pushover Analysis
Steel Jacketing
Retrofitted RC Buildings
Rights
embargoedAccess
License
http://purl.org/coar/access_right/c_f1cf
id UTB2_d9599dba637b64be10caa668ca50e05b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12656
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
title Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
spellingShingle Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
Axial Compression Ratio
Seismic Performance
Modal Pushover Analysis
Steel Jacketing
Retrofitted RC Buildings
title_short Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
title_full Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
title_fullStr Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
title_full_unstemmed Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
title_sort Influence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildings
dc.creator.fl_str_mv Villar-Salinas, Sergio
Pacheco Orozco, Sebastián
Carrillo, Julián
López-Almansa, Francisco
dc.contributor.author.none.fl_str_mv Villar-Salinas, Sergio
Pacheco Orozco, Sebastián
Carrillo, Julián
López-Almansa, Francisco
dc.subject.keywords.spa.fl_str_mv Axial Compression Ratio
Seismic Performance
Modal Pushover Analysis
Steel Jacketing
Retrofitted RC Buildings
topic Axial Compression Ratio
Seismic Performance
Modal Pushover Analysis
Steel Jacketing
Retrofitted RC Buildings
description Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations; this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper; these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings; the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength; hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verifications
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-09T20:04:33Z
dc.date.available.none.fl_str_mv 2024-04-09T20:04:33Z
dc.date.issued.none.fl_str_mv 2024-04-03
dc.date.submitted.none.fl_str_mv 2024-04-09
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Villar-Salinas, S., Pacheco, S., Carrillo, J., & López-Almansa, F. (2024). Analysis of the influence of high axial compression ratio in RC columns on the structural response of MRF buildings. Structural Engineering and Mechanics, 90(1), 51–70. https://doi.org/10.12989/sem.2024.90.1.051
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12656
dc.identifier.doi.none.fl_str_mv 10.12989/sem.2024.90.1.051
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Villar-Salinas, S., Pacheco, S., Carrillo, J., & López-Almansa, F. (2024). Analysis of the influence of high axial compression ratio in RC columns on the structural response of MRF buildings. Structural Engineering and Mechanics, 90(1), 51–70. https://doi.org/10.12989/sem.2024.90.1.051
10.12989/sem.2024.90.1.051
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12656
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_f1cf
dc.format.extent.none.fl_str_mv 20 págs.
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Civil
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/1/Title%20page%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/3/Title%20page%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/4/Title%20page%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv f1f679fbf02647b072e7d82e16642dd0
e20ad307a1c5f3f25af9304a7a7c86b6
6c9dec69533590f8375b42d195a40b28
542b7b1b1b7c7934cf1e157d32784e0e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021658605780992
spelling Villar-Salinas, Sergiofc373e68-d8e4-4b76-9a03-14820eeb1be1Pacheco Orozco, Sebastián2238928a-1f03-41ee-8bc9-15841786a3a0Carrillo, Juliándd7f9ce7-789d-48d8-89f1-d931f00f91d2López-Almansa, Francisco889df9cb-41d6-4633-bd56-b9ba6c1676b52024-04-09T20:04:33Z2024-04-09T20:04:33Z2024-04-032024-04-09Villar-Salinas, S., Pacheco, S., Carrillo, J., & López-Almansa, F. (2024). Analysis of the influence of high axial compression ratio in RC columns on the structural response of MRF buildings. Structural Engineering and Mechanics, 90(1), 51–70. https://doi.org/10.12989/sem.2024.90.1.051https://hdl.handle.net/20.500.12585/1265610.12989/sem.2024.90.1.051Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPoorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations; this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper; these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings; the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength; hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verificationsFundación Carolina, Universidad Tecnológica de Bolívar, PCEM SAS20 págs.Pdfapplication/pdfengInfluence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildingsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Axial Compression RatioSeismic PerformanceModal Pushover AnalysisSteel JacketingRetrofitted RC Buildingsinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCartagena de IndiasCampus TecnológicoIngeniería CivilPúblico generalAlfarah, B., F. López-Almansa, and S. Oller. 2020. “Numerical Study on the Relevance of Columns Hidden Failure Modes in the Seismic Capacity of Non-Ductile RC Frames.” J. Earthq. Eng., 24 (9): 1417–1434. Taylor & Francis. https://doi.org/10.1080/13632469.2018.1458666.Abou-Elfath, H., M. Ramadan, and F. Omar Alkanai. 2017. “Upgrading the seismic capacity of existing RC buildings using buckling restrained braces.” Alex. Eng. J., 56 (2): 251–262. https://doi.org/10.1016/j.aej.2016.11.018.Al-Osta, M. A., U. Khan, M. H. Baluch, and M. K. Rahman. 2018. “Effects of variation of axial load on seismic performance of shear deficient RC exterior BCJs.” Int. J. Concr. Struct. Mater., 12 (1): 46. https://doi.org/10.1186/s40069-018-0277-0.Bhatt, C., and R. Bento. 2014. “The Extended Adaptive Capacity Spectrum Method for the Seismic Assessment of Plan-Asymmetric Buildings.” Earthq. Spectra, 30 (2): 683–703. https://doi.org/10.1193/022112EQS048M.Caredda, G., N. Makoond, M. Buitrago, J. Sagaseta, M. Chryssanthopoulos, and J. M. Adam. 2023. “Learning from the progressive collapse of buildings.” Dev. Built Environ., 15: 100194. https://doi.org/10.1016/j.dibe.2023.100194.Carrillo, J., and G. González. 2007. “Inelastic modeling of concrete frames with nonreinforced masonry.” DYNA, 74 (152): 229–239.Chen, Z. Y., W. Chen, W. Zhang, and M. L. Lou. 2016. “Effects of axial compression ratio of central columns on seismic performance of a multi-story underground structure.” Int. J. Comput. Methods, 13 (04): 1641014. World Scientific Publishing Co. https://doi.org/10.1142/S0219876216410140.Cimellaro, G. P., T. Giovine, and D. López-García. 2014. “Bidirectional pushover analysis of irregular structures.” J. Struct. Eng., 140 (9): 04014059. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001032.Comert, M., C. Demir, A. O. Ates, K. Orakcal, and A. Ilki. 2017. “Seismic performance of three-storey full-scale sub-standard reinforced concrete buildings.” Bull. Earthq. Eng., 15 (8): 3293–3320. https://doi.org/10.1007/s10518-016-0023-4.Domínguez, D., F. López-Almansa, and A. Benavent-Climent. 2016. “Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)?” Eng. Struct., 108: 134–154. https://doi.org/10.1016/j.engstruct.2015.11.020.Elwood, K. J., and J. P. Moehle. 2005. “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement.” Earthq. Spectra, 21 (1): 71–89. https://doi.org/10.1193/1.1849774.Elwood, K. J., and J. P. Moehle. 2008. “Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures.” Earthq. Eng. Struct. Dyn., 37 (7): 991–1012. John Wiley & Sons, Ltd. https://doi.org/10.1002/eqe.787.Fadaei, E., H. Shakib, and A. Azarbakht. 2020. “Structural Global Performance Assessment Versus Individual Element-Oriented Performance-Based Assessment.” Iran. J. Sci. Technol. Trans. Civ. Eng., 44 (S1): 141–150. https://doi.org/10.1007/s40996-020-00379-9.Falcone, R., F. Carrabs, R. Cerulli, C. Lima, and E. Martinelli. 2019. “Seismic retrofitting of existing RC buildings: a rational selection procedure based on Genetic Algorithms.” Structures, 22: 310–326. https://doi.org/10.1016/j.istruc.2019.08.006.Han, S. W., and A. K. Chopra. 2006. “Approximate incremental dynamic analysis using the modal pushover analysis procedure.” Earthq. Eng. Struct. Dyn., 35 (15): 1853–1873. https://doi.org/10.1002/eqe.605.Jaradat, Y., and H. Far. 2021. “Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings.” Struct. Eng. Mech., 77 (2): 293–304. https://doi.org/10.12989/SEM.2021.77.2.293.Kamal, M., M. Inel, and B. T. Cayci. 2022. “Seismic behavior of mid-rise reinforced concrete adjacent buildings considering soil-structure interaction.” J. Build. Eng., 51: 104296. https://doi.org/10.1016/j.jobe.2022.104296.Leti, M., and H. Bilgin. 2024. “Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake.” Struct. Eng. Mech., 89 (5): 491–505. https://doi.org/10.12989/sem.2024.89.5.491.Li, Y. J., and P. Liu. 2012. “Effect of axial compression ratio on ductility and bearing capacity of specially shaped columns with HRB500 reinforcement.” Appl. Mech. Mater., 204–208: 1066–1069. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.204-208.1066.López-Almansa, F., D. Domínguez, and A. Benavent-Climent. 2013. “Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions.” Eng. Struct., 46: 687–702. https://doi.org/10.1016/j.engstruct.2012.08.033.Miano, A., G. Chiumiento, A. Formisano, and A. Prota. 2022. “How does the knowledge level affect the seismic retrofit cost? The case study of a RC building.” Struct. Eng. Mech., 82 (5): 557–569. https://doi.org/10.12989/SEM.2022.82.5.557.Nahar, M., K. Islam, and A. M. Billah. 2020. “Seismic collapse safety assessment of concrete beam-column joints reinforced with different types of shape memory alloy rebars.” J. Build. Eng., 29: 101106. https://doi.org/10.1016/j.jobe.2019.101106.Pampanin, S., and U. Akguzel. 2011. “Performance-Based Seismic Retrofit of Existing Reinforced Concrete Frame Buildings using Fibre-Reinforced Polymers: Challenges and Solutions.” Struct. Eng. Int., 21 (3): 260–270. https://doi.org/10.2749/101686611X13049248220041.Pujades, L. G., A. H. Barbat, R. González-Drigo, J. Avila, and S. Lagomarsino. 2012. “Seismic performance of a block of buildings representative of the typical construction in the Eixample district in Barcelona (Spain).” Bull. Earthq. Eng., 10 (1): 331–349. https://doi.org/10.1007/s10518-010-9207-5.Quintana Gallo, P., U. Akguzel, A. J. Carr, and S. Pampanin. 2022. “Seismic response of a non-ductile RC frame building subjected to shake-table excitations.” Bull. Earthq. Eng., 20 (1): 517–545. https://doi.org/10.1007/s10518-021-01228-4.Requena-Garcia-Cruz, M. V., A. Morales-Esteban, and P. Durand-Neyra. 2022. “Assessment of specific structural and ground-improvement seismic retrofitting techniques for a case study RC building by means of a multi-criteria evaluation.” Structures, 38: 265–278. https://doi.org/10.1016/j.istruc.2022.02.015.Reyes, J. C., and A. K. Chopra. 2011. “Three‐dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings.” Earthq. Eng. Struct. Dyn., 40 (7): 789–806. https://doi.org/10.1002/eqe.1060.Ricci, P., F. De Luca, and G. M. Verderame. 2011. “6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance.” Bull. Earthq. Eng., 9 (1): 285–305. https://doi.org/10.1007/s10518-010-9204-8.Saborio-Romano, D., G. J. O’Reilly, D. P. Welch, and L. Landi. 2018. “Simplified pushover analysis of moment resisting frame structures AU - Sullivan, Timothy J.” J. Earthq. Eng., 1–28. https://doi.org/10.1080/13632469.2018.1528911.Sezen, H. 2008. “Shear deformation model for reinforced concrete columns.” Struct. Eng. Mech., 28 (1): 39–52. https://doi.org/10.12989/SEM.2008.28.1.039.Sheth, R., J. Prajapati, and D. Soni. 2018. “Comparative study nonlinear static pushover analysis and displacement based adaptive pushover analysis method.” Int. J. Struct. Eng., 9 (1): 81–90. https://doi.org/10.1504/IJSTRUCTE.2018.090753.Su, R. K. L., and W. S. Man. 2007. “Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio.” Eng. Struct., 29 (8): 1957–1965. https://doi.org/10.1016/j.engstruct.2006.10.020.Tena-Colunga, A., E. A. Godínez-Domínguez, and H. Hernández-Ramírez. 2022. “Seismic retrofit and strengthening of buildings. Observations from the 2017 Puebla-Morelos earthquake in Mexico City.” J. Build. Eng., 47: 103916. https://doi.org/10.1016/j.jobe.2021.103916.Tore, E., C. Demir, M. Comert, and A. Ilki. 2021. “Seismic Collapse Performance of a Full-Scale Concrete Building with Lightly Reinforced Columns.” J. Struct. Eng., 147 (12): 04021207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003178.Villar-Salinas, S., A. Guzmán, and J. Carrillo. 2021. “Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing.” J. Build. Eng., 33: 101510. https://doi.org/10.1016/j.jobe.2020.101510.Yang, Y., N. Hao, Y. Xue, S. Feng, Y. Yu, and S. Zhang. 2022. “Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios.” Struct. Eng. Mech., 84 (3): 345–360. https://doi.org/10.12989/SEM.2022.84.3.345.Yuen, T. Y. P., J. S. Kuang, and D. Y. B. Ho. 2016. “Ductility design of RC columns. Part 1: consideration of axial compression ratio.” HKIE Trans., 23 (4): 230–244. https://doi.org/10.1080/1023697X.2016.1232179.Zimos, D. K., V. K. Papanikolaou, A. J. Kappos, and P. E. Mergos. 2020. “Shear-Critical Reinforced Concrete Columns under Increasing Axial Load.” ACI Struct. J., 117 (5). https://doi.org/10.14359/51725886.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALTitle page (1).pdfTitle page (1).pdfTitle Pageapplication/pdf341252https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/1/Title%20page%20%281%29.pdff1f679fbf02647b072e7d82e16642dd0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTTitle page (1).pdf.txtTitle page (1).pdf.txtExtracted texttext/plain5445https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/3/Title%20page%20%281%29.pdf.txt6c9dec69533590f8375b42d195a40b28MD53THUMBNAILTitle page (1).pdf.jpgTitle page (1).pdf.jpgGenerated Thumbnailimage/jpeg5736https://repositorio.utb.edu.co/bitstream/20.500.12585/12656/4/Title%20page%20%281%29.pdf.jpg542b7b1b1b7c7934cf1e157d32784e0eMD5420.500.12585/12656oai:repositorio.utb.edu.co:20.500.12585/126562024-04-10 00:18:37.339Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=