Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy
White light scanning interference (WLSI) microscopes provide an accurate surface topography of engineered surfaces. However, the measurement accuracy is substantially reduced in surfaces with low-reflectivity regions or high roughness, like a surface affected by corrosion. An alternative technique c...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9164
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9164
- Palabra clave:
- Corrosion
Recovery
Reflection
Textures
3D reconstruction
Accurate measurement
Engineered surfaces
Extensive simulations
Interference microscopy
Measurement accuracy
Standard deviation
Surface reflectivity
Surface roughness
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d7fb6c056220e363b4e6529580fc7dd9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9164 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
title |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
spellingShingle |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy Corrosion Recovery Reflection Textures 3D reconstruction Accurate measurement Engineered surfaces Extensive simulations Interference microscopy Measurement accuracy Standard deviation Surface reflectivity Surface roughness |
title_short |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
title_full |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
title_fullStr |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
title_full_unstemmed |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
title_sort |
Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy |
dc.subject.keywords.none.fl_str_mv |
Corrosion Recovery Reflection Textures 3D reconstruction Accurate measurement Engineered surfaces Extensive simulations Interference microscopy Measurement accuracy Standard deviation Surface reflectivity Surface roughness |
topic |
Corrosion Recovery Reflection Textures 3D reconstruction Accurate measurement Engineered surfaces Extensive simulations Interference microscopy Measurement accuracy Standard deviation Surface reflectivity Surface roughness |
description |
White light scanning interference (WLSI) microscopes provide an accurate surface topography of engineered surfaces. However, the measurement accuracy is substantially reduced in surfaces with low-reflectivity regions or high roughness, like a surface affected by corrosion. An alternative technique called shape from focus (SFF) takes advantage of the surface texture to recover the 3D surface by using a focus metric through a vertical scan. In this work, we propose a technique called SFF-WLSI, which consists of recovering the 3D surface of an object by applying the Tenegrad Variance (TENV) focus metric to WLSI images. Extensive simulation results show that the proposed technique yields accurate measurements under different surface roughness and surface reflectivity, outperforming the conventional WLSI and the SFF techniques. We validated the simulation results on two real objects with a Mirau-type microscope. The first was a flat lapping specimen with R a 0.05 μm for which we measured an average value of R a 0.055 μm and standard deviation σ 0.008 μm. The second was a metallic sphere with corrosion, which we reconstructed with WLSI versus the proposed SFF-WLSI technique, producing a better 3D reconstruction with less undefined depth values. © 2018 Optical Society of America. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:06Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:06Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Applied Optics; Vol. 58, Núm. 5; pp. A101-A111 |
dc.identifier.issn.none.fl_str_mv |
1559128X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9164 |
dc.identifier.doi.none.fl_str_mv |
10.1364/AO.58.00A101 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57203321995 57190688459 24329839300 |
identifier_str_mv |
Applied Optics; Vol. 58, Núm. 5; pp. A101-A111 1559128X 10.1364/AO.58.00A101 Universidad Tecnológica de Bolívar Repositorio UTB 57203321995 57190688459 24329839300 |
url |
https://hdl.handle.net/20.500.12585/9164 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
OSA - The Optical Society |
publisher.none.fl_str_mv |
OSA - The Optical Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061456342&doi=10.1364%2fAO.58.00A101&partnerID=40&md5=b4086b44e69abf93da4c508632ad8145 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9164/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021788268494848 |
spelling |
2020-03-26T16:33:06Z2020-03-26T16:33:06Z2019Applied Optics; Vol. 58, Núm. 5; pp. A101-A1111559128Xhttps://hdl.handle.net/20.500.12585/916410.1364/AO.58.00A101Universidad Tecnológica de BolívarRepositorio UTB572033219955719068845924329839300White light scanning interference (WLSI) microscopes provide an accurate surface topography of engineered surfaces. However, the measurement accuracy is substantially reduced in surfaces with low-reflectivity regions or high roughness, like a surface affected by corrosion. An alternative technique called shape from focus (SFF) takes advantage of the surface texture to recover the 3D surface by using a focus metric through a vertical scan. In this work, we propose a technique called SFF-WLSI, which consists of recovering the 3D surface of an object by applying the Tenegrad Variance (TENV) focus metric to WLSI images. Extensive simulation results show that the proposed technique yields accurate measurements under different surface roughness and surface reflectivity, outperforming the conventional WLSI and the SFF techniques. We validated the simulation results on two real objects with a Mirau-type microscope. The first was a flat lapping specimen with R a 0.05 μm for which we measured an average value of R a 0.055 μm and standard deviation σ 0.008 μm. The second was a metallic sphere with corrosion, which we reconstructed with WLSI versus the proposed SFF-WLSI technique, producing a better 3D reconstruction with less undefined depth values. © 2018 Optical Society of America.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 785-2017Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) (538871552485, 785-2017). Parts of this work were presented at the Imaging and Applied Optics Congress 2018, Orlando, Florida, 2018, paper JTu4A.19.Recurso electrónicoapplication/pdfengOSA - The Optical Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061456342&doi=10.1364%2fAO.58.00A101&partnerID=40&md5=b4086b44e69abf93da4c508632ad8145Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1CorrosionRecoveryReflectionTextures3D reconstructionAccurate measurementEngineered surfacesExtensive simulationsInterference microscopyMeasurement accuracyStandard deviationSurface reflectivitySurface roughnessAltamar Mercado, HernandoPatiño Vanegas, AlbertoMarrugo A.G.Harding, K., (2013) Handbook of Optical Dimensional Metrology, , CRC PressGianto, G., Salzenstein, F., Montgomery, P., Comparison of envelope detection techniques in coherence scanning interferometry (2016) Appl. Opt., 55, pp. 6763-6774Larkin, K.G., Efficient nonlinear algorithm for envelope detection in white light interferometry (1996) J. Opt. Soc. Am. A, 13, pp. 832-843Montgomery, P., Salzenstein, F., Montaner, D., Serio, B., Pfeiffer, P., Implementation of a fringe visibility based algorithm in coherence scanning interferometry for surface roughness measurement (2013) Proc. SPIE, 8788, p. 87883GDresel, T., Häusler, G., Venzke, H., Three-dimensional sensing of rough surfaces by coherence radar (1992) Appl. Opt., 31, pp. 919-925Gao, F., Leach, R.K., Petzing, J., Coupland, J.M., Surface measurement errors using commercial scanning white light interferometers (2008) Meas. Sci. Technol., 19, p. 015303Noguchi, M., Nayar, S.K., Microscopic shape from focus using a projected illumination pattern (1996) Math. Comput. Model., 24, pp. 31-48Florczak, J., Usage of shape from focus method for 3D shape recovery and identification of 3D object position (2014) Int. J. Image Process., 8, pp. 116-124Helmli, F., Scherer, S., Adaptive shape from focus with an error estimation in light microscopy (2001) 2nd International Symposium on Image and Signal Processing and Analysis, pp. 188-193Tian, Y., Hu, H., Cui, H., Yang, S., Qi, J., Xu, Z., Li, L., Three-dimensional surface microtopography recovery from a multifocus image sequence using an omnidirectional modified Laplacian operator with adaptive window size (2017) Appl. Opt., 56, pp. 6300-6310Pertuz, S., Puig, D., García, M.A., Analysis of focus measure operators for shape-from-focus (2013) Pattern Recogn, 46, pp. 1415-1432Xu, X., Wang, Y., Zhang, X., Li, S., Liu, X., Wang, X., Tang, J., A comparison of contrast measurements in passive autofocus systems for low contrast images (2014) Multimedia Tools Appl, 69, pp. 139-156Lee, I., Mahmood, M.T., Shim, S.O., Lee, S.A., Choi, T.S., Depth estimation based on blur measurement for three dimensional camera (2013) IEEE International Conference on Consumer Electronics, pp. 262-263Fan, T., Yu, H., A novel shape from focus method based on 3D steerable filters for improved performance on treating textureless region (2018) Opt. Commun., 410, pp. 254-261Liżewski, K., Tomczewski, S., Kozacki, T., Kostencka, J., High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module (2014) Appl. Opt., 53, pp. 2446-2454Filipinas, J.L.D.C., Almoro, P.F., Vibration detection using focus analysis of interferograms (2012) Appl. Opt., 51, pp. 1431-1435Lim, Y.-T., Park, J.-H., Kwon, K.-C., Kim, N., Analysis on enhanced depth of field for integral imaging microscope (2012) Opt. Express, 20, pp. 23480-23488Sobel, G., Feldman, I., A 3 × 3 isotropic gradient operator for image processing (1968) Stanford Artificial Intelligence Project (SAIL)Vo, Q., Fang, F., Zhang, X., Gao, H., Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms (2017) Appl. Opt., 56, pp. 8174-8185Ausloos, M., Berman, D., A multivariate weierstrass-mandelbrot function (1985) Proc. R. Soc. Lond. A, 400, pp. 331-350Yan, W., Komvopoulos, K., Contact analysis of elastic-plastic fractal surfaces (1998) J. Appl. Phys., 84, pp. 3617-3624Ragheb, H., Hancock, E.R., Rough surface analysis using Kirchhoff theory (2003) British Machine Vision Conference, pp. 20.1–20.10. , British Machine Vision AssociationChoi, N., Harvey, J.E., Image degradation due to surface scatter in the presence of aberrations (2012) Appl. Opt., 51, pp. 535-546Malacara, D., (2007) Optical Shop Testing, 59. , WileyKino, G.S., Corle, T.R., (1996) Confocal Scanning Optical Microscopy and Related Imaging Systems, , AcademicSubbarao, M., Focusing techniques (1993) Opt. Eng., 32, pp. 2824-2836Pentland, A.P., A new sense for depth of field (1987) IEEE Trans. Pattern Anal. Mach. Intel., PAMI-9, pp. 523-531http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9164/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9164oai:repositorio.utb.edu.co:20.500.12585/91642023-05-25 10:16:29.098Repositorio Institucional UTBrepositorioutb@utb.edu.co |