Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes

In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝn space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝn space, whose components represent certain amino acid side-chain properties, w...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9013
Acceso en línea:
https://hdl.handle.net/20.500.12585/9013
Palabra clave:
3D protein descriptor
Bilinear form
Coulombic matrix
LDA
Protein structural classes
Amino acid
Macromolecule
Protein
Amino acid
Discriminant analysis
Matrix
Protein
Three-dimensional modeling
Amino acid analysis
Article
Correlation coefficient
Macromolecule
Mathematical parameters
Nonbiological model
Priority journal
Protein analysis
Protein function
Protein structure
Statistical parameters
Structure analysis
Validation study
Algorithm
Biological model
Biology
Chemical structure
Chemistry
Computer simulation
Macromolecule
Markov chain
Procedures
Protein conformation
Quantitative structure activity relation
Reproducibility
Statistical model
Algorithms
Amino Acids
Computational Biology
Computer simulation
Linear Models
Macromolecular Substances
Models, Biological
Models, Molecular
Protein conformation
Proteins
Quantitative Structure-Activity Relationship
Reproducibility of Results
Stochastic processes
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d605731f74f50fc0f231e0f24fcdd5e1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9013
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
title Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
spellingShingle Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
3D protein descriptor
Bilinear form
Coulombic matrix
LDA
Protein structural classes
Amino acid
Macromolecule
Protein
Amino acid
Discriminant analysis
Matrix
Protein
Three-dimensional modeling
Amino acid analysis
Article
Correlation coefficient
Macromolecule
Mathematical parameters
Nonbiological model
Priority journal
Protein analysis
Protein function
Protein structure
Statistical parameters
Structure analysis
Validation study
Algorithm
Biological model
Biology
Chemical structure
Chemistry
Computer simulation
Macromolecule
Markov chain
Procedures
Protein conformation
Quantitative structure activity relation
Reproducibility
Statistical model
Algorithms
Amino Acids
Computational Biology
Computer simulation
Linear Models
Macromolecular Substances
Models, Biological
Models, Molecular
Protein conformation
Proteins
Quantitative Structure-Activity Relationship
Reproducibility of Results
Stochastic processes
title_short Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
title_full Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
title_fullStr Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
title_full_unstemmed Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
title_sort Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
dc.subject.keywords.none.fl_str_mv 3D protein descriptor
Bilinear form
Coulombic matrix
LDA
Protein structural classes
Amino acid
Macromolecule
Protein
Amino acid
Discriminant analysis
Matrix
Protein
Three-dimensional modeling
Amino acid analysis
Article
Correlation coefficient
Macromolecule
Mathematical parameters
Nonbiological model
Priority journal
Protein analysis
Protein function
Protein structure
Statistical parameters
Structure analysis
Validation study
Algorithm
Biological model
Biology
Chemical structure
Chemistry
Computer simulation
Macromolecule
Markov chain
Procedures
Protein conformation
Quantitative structure activity relation
Reproducibility
Statistical model
Algorithms
Amino Acids
Computational Biology
Computer simulation
Linear Models
Macromolecular Substances
Models, Biological
Models, Molecular
Protein conformation
Proteins
Quantitative Structure-Activity Relationship
Reproducibility of Results
Stochastic processes
topic 3D protein descriptor
Bilinear form
Coulombic matrix
LDA
Protein structural classes
Amino acid
Macromolecule
Protein
Amino acid
Discriminant analysis
Matrix
Protein
Three-dimensional modeling
Amino acid analysis
Article
Correlation coefficient
Macromolecule
Mathematical parameters
Nonbiological model
Priority journal
Protein analysis
Protein function
Protein structure
Statistical parameters
Structure analysis
Validation study
Algorithm
Biological model
Biology
Chemical structure
Chemistry
Computer simulation
Macromolecule
Markov chain
Procedures
Protein conformation
Quantitative structure activity relation
Reproducibility
Statistical model
Algorithms
Amino Acids
Computational Biology
Computer simulation
Linear Models
Macromolecular Substances
Models, Biological
Models, Molecular
Protein conformation
Proteins
Quantitative Structure-Activity Relationship
Reproducibility of Results
Stochastic processes
description In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝn space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝn space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragments of interest in proteins. On the other hand, with the objective of taking into account specific interactions among amino acids in global or local indices, geometric and topological cut-offs are defined. To assess the utility of global and local indices a classification model for the prediction of the major four protein structural classes, was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, respectively. The obtained model showed high values of the generalized square correlation coefficient (GC2) on both the training and test series. The statistical parameters derived from the internal and external validation procedures demonstrate the robustness, stability and the high predictive power of the proposed model. The performance of the LDA-model demonstrates the capability of the proposed indices not only to codify relevant biochemical information related to the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that the current method will benefit the prediction of other protein attributes or functions. © 2015 Elsevier Ltd.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:46Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:46Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Theoretical Biology; Vol. 374, pp. 125-137
dc.identifier.issn.none.fl_str_mv 00225193
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9013
dc.identifier.doi.none.fl_str_mv 10.1016/j.jtbi.2015.03.026
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55665599200
56190252700
56189852800
55363486500
6506139148
6602882448
identifier_str_mv Journal of Theoretical Biology; Vol. 374, pp. 125-137
00225193
10.1016/j.jtbi.2015.03.026
Universidad Tecnológica de Bolívar
Repositorio UTB
55665599200
56190252700
56189852800
55363486500
6506139148
6602882448
url https://hdl.handle.net/20.500.12585/9013
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press
publisher.none.fl_str_mv Academic Press
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927727853&doi=10.1016%2fj.jtbi.2015.03.026&partnerID=40&md5=ee90e9e8f1a6db0fdd42a077dc279a83
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9013/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021666358951936
spelling 2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015Journal of Theoretical Biology; Vol. 374, pp. 125-13700225193https://hdl.handle.net/20.500.12585/901310.1016/j.jtbi.2015.03.026Universidad Tecnológica de BolívarRepositorio UTB5566559920056190252700561898528005536348650065061391486602882448In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝn space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝn space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragments of interest in proteins. On the other hand, with the objective of taking into account specific interactions among amino acids in global or local indices, geometric and topological cut-offs are defined. To assess the utility of global and local indices a classification model for the prediction of the major four protein structural classes, was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, respectively. The obtained model showed high values of the generalized square correlation coefficient (GC2) on both the training and test series. The statistical parameters derived from the internal and external validation procedures demonstrate the robustness, stability and the high predictive power of the proposed model. The performance of the LDA-model demonstrates the capability of the proposed indices not only to codify relevant biochemical information related to the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that the current method will benefit the prediction of other protein attributes or functions. © 2015 Elsevier Ltd.National Institutes of Health, NIH: P30CA016672amino acid, 65072-01-7; protein, 67254-75-5; Amino Acids; Macromolecular Substances; ProteinsRecurso electrónicoapplication/pdfengAcademic Presshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84927727853&doi=10.1016%2fj.jtbi.2015.03.026&partnerID=40&md5=ee90e9e8f1a6db0fdd42a077dc279a83Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13D protein descriptorBilinear formCoulombic matrixLDAProtein structural classesAmino acidMacromoleculeProteinAmino acidDiscriminant analysisMatrixProteinThree-dimensional modelingAmino acid analysisArticleCorrelation coefficientMacromoleculeMathematical parametersNonbiological modelPriority journalProtein analysisProtein functionProtein structureStatistical parametersStructure analysisValidation studyAlgorithmBiological modelBiologyChemical structureChemistryComputer simulationMacromoleculeMarkov chainProceduresProtein conformationQuantitative structure activity relationReproducibilityStatistical modelAlgorithmsAmino AcidsComputational BiologyComputer simulationLinear ModelsMacromolecular SubstancesModels, BiologicalModels, MolecularProtein conformationProteinsQuantitative Structure-Activity RelationshipReproducibility of ResultsStochastic processesMarrero-Ponce Y.Contreras-Torres E.García-Jacas C.R.Barigye S.J.Cubillán, NéstorAlvarado Y.J.Althaus, I.W., Chou, J.J., Gonzales, A.J., Deibel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Thomas, R.C., Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E (1993) Biochemistry, 32, pp. 6548-6554Balaban, A.T., Local versus global (i.e. atomic versus molecular) numerical modeling of molecular graphs (1994) J. Chem. Inf. Comput. Sci., 34, p. 398Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: an overview (2000) Bioinformatics, 16, pp. 412-424Barigye, S.J., Marrero-Ponce, Y., Pérez-Giménez, F., Bonchev, D., Trends in information theory based chemical structure codification (2014) Mol. Divers., 18, pp. 673-686Cai, Y.-D., Chou, K.-C., Predicting membrane protein type by functional domain composition and pseudo-amino acid composition (2006) J. Theor. Biol., 238, pp. 395-400Cai, Y.-D., Hu, J., Liu, X., Chou, K.-C., Prediction of protein structural classes by neural network method (2002) J. Mol. Des., 1, pp. 332-338Cai, Y.-D., Liu, X.-J., Xu, X.-B., Chou, K.-C., Prediction of protein structural classes by support vector machines (2002) Comput. Chem., 26, pp. 293-296Cai, Y.-D., Feng, K.-Y., Lu, W.-C., Chou, K.-C., Using LogitBoost classifier to predict protein structural classes (2006) J. Theor. Biol., 238, pp. 172-176Carbo-Dorca, R., Stochastic transformation of quantum similarity matrixes and their use in quantum QSAR (QQSAR) models (2000) Int. J. Quantum Chem., 79, pp. 163-177Collantes, E.R., Dunn, W.J., Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogs (1995) J. Med. Chem., 38, pp. 2705-2713Chen, C., Chen, L.-X., Zou, X.-Y., Cai, P.-X., Predicting protein structural class based on multi-features fusion (2008) J. Theor. Biol., 253, pp. 388-392Chen, C., Tian, Y.-X., Zou, X.-Y., Cai, P.-X., Mo, J.-Y., Using pseudo-amino acid composition and support vector machine to predict protein structural class (2006) J. Theor. Biol., 243, pp. 444-448Chen, K., Kurgan, L.A., Ruan, J., Prediction of protein structural class using novel evolutionary collocation-based sequence representation (2008) J. Comput. Chem., 29, pp. 1596-1604Chen, W., Feng, P.-M., Lin, H., Chou, K.-C., iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition (2013), Nucleic Acids Res., gks1450Chou, K.-C., Energy-optimized structure of antifreeze protein and its binding mechanism (1992) J. Mol. Biol., 223, pp. 509-517Chou, K.-C., A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space (1995) Proteins: Struct. Funct. Bioinf., 21, pp. 319-344Chou, K.-C., A key driving force in determination of protein structural classes (1999) Biochem. Biophys. Res. Commun., 264, pp. 216-224Chou, K.-C., Prediction of protein cellular attributes using pseudo-amino acid composition (2001) Proteins: Struct. Funct. Bioinf., 43, pp. 246-255Chou, K.-C., Progress in protein structural class prediction and its impact to bioinformatics and proteomics (2005) Curr. Protein Pept. Sci., 6, pp. 423-436Chou, K.-C., Graphic rule for drug metabolism systems (2010) Curr. Drug Metab., 11, pp. 369-378Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition (2011) J. Theor. Biol., 273, pp. 236-247Chou, K.-C., Zhang, C.-T., Predicting protein folding types by distance functions that make allowances for amino acid interactions (1994) J. Biol. Chem., 269, pp. 22014-22020Chou, K.-C., Cai, Y.-D., Predicting protein structural class by functional domain composition (2004) Biochem. Biophys. Res. Commun., 321, pp. 1007-1009Chou, K.-C., Shen, H.-B., Recent progress in protein subcellular location prediction (2007) Anal. Biochem., 370, pp. 1-16Chou, K.-C., Zhang, C.-T., Maggiora, G.M., Disposition of amphiphilic helices in heteropolar environments (1997) Proteins: Struct. Funct. Genet., 28, pp. 99-108Chou, K.-C., Lin, W.-Z., Xiao, X., Wenxiang: a web-server for drawing wenxiang diagrams (2011) Nat. Sci., 3, p. 862Chou, K.C., Prediction of protein structural classes and subcellular locations (2000) Curr. Protein Pept. Sci., 1, pp. 171-208Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., Giuliani, A., Protein contact networks: an emerging paradigm in chemistry (2012) Chem. Rev., 113, pp. 1598-1613Ding, Y.-S., Zhang, T.-L., Chou, K.-C., Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network (2007) Protein Pept. Lett., 14, pp. 811-815Edwards, C.H., Penney, D.E., (1988) Elementary Linear Algebra, , Prentice-Hall, Englewoods CliffsEriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs (2003) Environ. Health Perspect., 111, p. 1361Estrada, E., Characterization of the folding degree of proteins (2002) Bioinformatics, 18, pp. 697-704García-Jacas, C.R., Marrero-Ponce, Y., Barigye, S.J., Valdés-Martiní, J.R., Rivera-Borroto, O.M., Olivero-Verbel, J., N-linear algebraic maps for chemical structure codification: a suitable generalization for atom-pair approaches? (2014) Curr. Drug Metab., 15, pp. 441-469García-Jacas, C.R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Valdés-Martiní, J.R., Contreras-Torres, E., (2014) J. Comput. Chem., 35, pp. 1395-1409García-Jacas, C.R., Aguilera-Mendoza, L., González-Pérez, R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Avdeenko, T., Multi-server approach for high-throughput molecular descriptors calculation based on multi-linear algebraic maps (2015) Mol. Inf., 34, pp. 60-69Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graph. Modell., 20, pp. 269-276González-Díaz, H., Uriarte, E., Proteins QSAR with Markov average electrostatic potentials (2005) Bioorg. Med. Chem. Lett., 15, pp. 5088-5094González, D., De Armas, R.R., Uriarte, E., In silico Markovian bioinformatics for predicting 1Ha-NMR chemical shifts in mouse epidermis growth factor (mEGF) (2002) Online J. Bioinform., 1, pp. 83-95González Díaz, H., Molina, R., Uriarte, E., Stochastic molecular descriptors for polymers. 1. Modelling the properties of icosahedral viruses with 3D-Markovian negentropies (2004) Polymer, 45, pp. 3845-3853Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701Gromiha, M., Saraboji, K., Ahmad, S., Ponnuswamy, M., Suwa, M., Role of non-covalent interactions for determining the folding rate of two-state proteins (2004) Biophys. Chem., 107, pp. 263-272Gromiha, M.M., Importance of native-state topology for determining the folding rate of two-state proteins (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1481-1485Gromiha, M.M., Selvaraj, S., Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction (2001) J. Mol. Biol., 310, pp. 27-32Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., Chou, K.-C., INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition (2014) Bioinformatics, , btu083Hellberg, S., Sjoestroem, M., Skagerberg, B., Wold, S., Peptide quantitative structure-activity relationships, a multivariate approach (1987) J. Med. Chem., 30, pp. 1126-1135Hopp, T.P., Woods, K.R., Prediction of protein antigenic determinants from amino acid sequences (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 3824-3828Kar, A., (2007) Medicinal Chemistry, , New Age International (P) Ltd., Publishers, New DelhiKong, L., Zhang, L., Lv, J., Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou[U+05F3]s pseudo amino acid composition (2014) J. Theor. Biol., 344, pp. 12-18Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein (1982) J. Mol. Biol., 157, pp. 105-132Lehninger, A., Nelson, D.L., Cox, M.M., (2005) Lehninger[U+05F3]s Principles of Biochemistry, , WH Freeman and Company, New YorkLevitt, M., Conformational preferences of amino acids in globular proteins (1978) Biochemistry, 17, pp. 4277-4285Levitt, M., Chothia, C., Structural patterns in globular proteins (1976) Nature, 261, pp. 552-558Li, Z.-C., Zhou, X.-B., Dai, Z., Zou, X.-Y., Prediction of protein structural classes by Chou[U+05F3]s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis (2009) Amino Acids, 37, pp. 415-425Lin, H., Li, Q.-Z., Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components (2007) J. Comput. Chem., 28, pp. 1463-1466Lin, S.-X., Lapointe, J., J. Biomed. Sci. Eng. (2013) Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou[U+05F3]s 50th anniversary and Professor Richard Giegé[U+05F3]s 40th anniversary of their scientific careers, 6, pp. 435-442Liu, B., Wang, X., Chen, Q., Dong, Q., Lan, X., Using amino acid physicochemical distance transformation for fast protein remote homology detection (2012) PLoS One, 7, p. e46633Liu, B., Wang, X., Zou, Q., Dong, Q., Chen, Q., Protein remote homology detection by combining Chou[U+05F3]s pseudo amino acid composition and profile-based protein representation (2013) Mol. Inf., 32, pp. 775-782Liu, B., Liu, F., Fang, L., Wang, X., Chou, K.-C., RepDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects (2014) Bioinformatics, , btu820Liu, B., Xu, J., Zou, Q., Xu, R., Wang, X., Chen, Q., Using distances between Top-n-gram and residue pairs for protein remote homology detection (2014) BMC Bioinform., 15, p. S3Liu, B., Xu, J., Fan, S., Xu, R., Zhou, J., Wang, X., PseDNA-Pro: DNA-binding protein identification by combining Chou[U+05F3]s PseAAC and physicochemical distance transformation (2014) Mol. Inf., 34, p. 8Liu, B., Xu, J., Lan, X., Xu, R., Zhou, J., Wang, X., Chou, K.-C., IDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition (2014) PLoS One, 9, p. e106691Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., Dong, Q., Chou, K.-C., Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection (2014) Bioinformatics, 30, pp. 472-479Liu, W.-M., Chou, K.-C., Prediction of protein structural classes by modified Mahalanobis discriminant algorithm (1998) J. Protein Chem., 17, pp. 209-217Marrero-Ponce, Y., Huesca-Guillén, A., Ibarra-Velarde, F., Quadratic indices of the molecular pseudograph[U+05F3]s atom adjacency matrix and their stochastic forms: a novel approach for virtual screening and in silico discovery of new lead paramphistomicide drugs-like compounds (2005) J. Mol. Struct.: THEOCHEM, 717, pp. 67-79Marrero-Ponce, Y., Castillo-Garit, J.A., Castro, E.A., Torrens, F., Rotondo, R., 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification (2008) J. Math. Chem., 44, pp. 755-786Marrero-Ponce, Y., Medina-Marrero, R., Castillo-Garit, J.A., Romero-Zaldivar, V., Torrens, F., Castro, E.A., Protein linear indices of the 'macromolecular pseudograph α-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor (2005) Bioorg. Med. Chem., 13, pp. 3003-3015Marrero-Ponce, Y., Marrero, R., Castro, E., Ramos de Armas, R., González-Díaz, H., Romero Zaldivar, V., Torrens, F., Protein quadratic indices of the ""macromolecular pseudograph[U+05F3]s α-carbon atom adjacency matrix"". 1. Prediction of arc repressor alanine-mutant[U+05F3]s stability (2004) Molecules, 9, pp. 1124-1147Marrero-Ponce, Y., García-Jacas, C.R., Barigye, S.J., Valdés-Martiní, J.R., Rivera-Borroto, O.M., Pino-Urias, R.W., Cubillán, N., Alvarado, Y.J., Optimum search strategies or novel 3D molecular descriptors: is there a stalemate? (2015) Curr. Bioinf., , (in press)Mathews, C.K., van Holde, K.E., Ahern, K.G., (2000) Biochemistry, , Benjamin Cummings, San FranciscoMcFarland, J., Gans, D., Linear discriminant analysis and cluster significance analysis (1990) Compr. Med. Chem., 4, pp. 667-689Moreau, G., Broto, P., The auto-correlation of a topological-structure-a new molecular descriptor (1980) Nouv. J. Chim.-New J. Chem., 4, pp. 359-360Ortega-Broche, S.E., Marrero-Ponce, Y., Díaz, Y.E., Torrens, F., Pérez-Giménez, F., Tomocomd-camps and protein bilinear indices-novel bio-macromolecular descriptors for protein research: I. Predicting protein stability effects of a complete set of alanine substitutions in the Arc repressor (2010) FEBS J., 277, pp. 3118-3146Plaxco, K.W., Simons, K.T., Baker, D., Contact order, transition state placement and the refolding rates of single domain proteins (1998) J. Mol. Biol., 277, pp. 985-994Ramos de Armas, R., González Díaz, H., Molina, R., Uriarte, E., Markovian backbone negentropies: molecular descriptors for protein research. I. Predicting protein stability in arc repressor mutants (2004) Proteins: Struct. Funct. Bioinf., 56, pp. 715-723Ramos de Armas, R., González Díaz, H., Molina, R., Pérez González, M., Uriarte, E., Stochastic-based descriptors studying peptides biological properties: modeling the bitter tasting threshold of dipeptides (2004) Bioorg. Med. Chem., 12, pp. 4815-4822Randic, M., Zupan, J., Balaban, A.T., Vikić-Topić, D., Plavšić, D., Graphical representation of proteins† (2010) Chem. Rev., 111, pp. 790-862Randić, M., Mehulić, K., Vukičević, D., Pisanski, T., Vikić-Topić, D., Plavšić, D., Graphical representation of proteins as four-color maps and their numerical characterization (2009) J. Mol. Graph. Modell., 27, pp. 637-641Rao, H., Zhu, F., Yang, G., Li, Z., Chen, Y., Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence (2011) Nucleic Acids Res., 39, pp. W385-W390Ruiz-Blanco, Y.B., García, Y., Sotomayor-Torres, C., Marrero-Ponce, Y., New set of 2D/3D thermodynamic indices for proteins. A formalism based on the Molten Globule theory (2010) Phys. Procedia, 8, pp. 63-72Sak, K., Karelson, M., Järv, J., Modeling of the amino acid side chain effects on peptide conformation (1999) Bioorg. Chem., 27, pp. 434-442Shen, H.-B., Yang, J., Liu, X.-J., Chou, K.-C., Using supervised fuzzy clustering to predict protein structural classes (2005) Biochem. Biophys. Res. Commun., 334, pp. 577-581Sinkhorn, R., Knopp, P., Concerning nonnegative matrices and doubly stochastic matrices (1967) Pac. J. Math., 21, pp. 343-348Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics, , Wiley-VCH, WeinheimTodeschini, R., Consonni, V., New local vertex invariants and molecular descriptors based on functions of the vertex degrees (2010) MATCH Commun. Math. Comput. Chem., 64, pp. 359-372Tropsha, A., Gramatica, P., Gombar, V.K., The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models (2003) QSAR Comb. Sci., 22, pp. 69-77Wu, Z.-C., Xiao, X., Chou, K.-C., 2D-MH: a web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids (2010) J. Theor. Biol., 267, pp. 29-34Xiao, X., Wang, P., Chou, K.-C., Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image (2008) J. Theor. Biol., 254, pp. 691-696Xiao, X., Lin, W.-Z., Chou, K.-C., Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes (2008) J. Comput. Chem., 29, pp. 2018-2024Xiao, X., Shao, S.-H., Huang, Z.-D., Chou, K.-C., Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor (2006) J. Comput. Chem., 27, pp. 478-482Zamyatnin, A., Protein volume in solution (1972) Prog. Biophys. Mol. Biol., 24, pp. 107-123Zhang, L., Zhao, X., Kong, L., Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou[U+05F3]s pseudo amino acid composition (2014) J. Theor. Biol., 355, pp. 105-110Zhang, T.-L., Ding, Y.-S., Chou, K.-C., Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern (2008) J. Theor. Biol., 250, pp. 186-193Zhou, G.-P., The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism (2011) J. Theor. Biol., 284, pp. 142-148Zhou, G., Deng, M., An extension of Chou[U+05F3]s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways (1984) Biochem. J., 222, p. 169Zhou, H., Zhou, Y., Folding rate prediction using total contact distance (2002) Biophys. J., 82, pp. 458-463http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9013/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9013oai:repositorio.utb.edu.co:20.500.12585/90132023-05-25 16:23:20.68Repositorio Institucional UTBrepositorioutb@utb.edu.co