Subatmospheric pressure in a water draining pipeline with an air pocket
An air pocket’s behaviour inside of a pipeline during transient conditions is of great importance due to its effect on the safety of the hydraulic system and the complexity of modeling its behaviour. The emptying process from water pipelines needs more assessment because the generation of troughs of...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8885
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8885
- Palabra clave:
- Air pocket
Air-water
Pipelines emptying
Subatmospheric pressure
Transient flow
Water distribution systems
Air-water interaction
Atmospheric pressure
Complexity
Distribution system
Hydraulics
Mathematical analysis
Numerical model
One-dimensional modeling
Pipeline
Transient flow
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d5b4d5d57e8171f515c10c98390ef9ea |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8885 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Subatmospheric pressure in a water draining pipeline with an air pocket |
title |
Subatmospheric pressure in a water draining pipeline with an air pocket |
spellingShingle |
Subatmospheric pressure in a water draining pipeline with an air pocket Air pocket Air-water Pipelines emptying Subatmospheric pressure Transient flow Water distribution systems Air-water interaction Atmospheric pressure Complexity Distribution system Hydraulics Mathematical analysis Numerical model One-dimensional modeling Pipeline Transient flow |
title_short |
Subatmospheric pressure in a water draining pipeline with an air pocket |
title_full |
Subatmospheric pressure in a water draining pipeline with an air pocket |
title_fullStr |
Subatmospheric pressure in a water draining pipeline with an air pocket |
title_full_unstemmed |
Subatmospheric pressure in a water draining pipeline with an air pocket |
title_sort |
Subatmospheric pressure in a water draining pipeline with an air pocket |
dc.subject.keywords.none.fl_str_mv |
Air pocket Air-water Pipelines emptying Subatmospheric pressure Transient flow Water distribution systems Air-water interaction Atmospheric pressure Complexity Distribution system Hydraulics Mathematical analysis Numerical model One-dimensional modeling Pipeline Transient flow |
topic |
Air pocket Air-water Pipelines emptying Subatmospheric pressure Transient flow Water distribution systems Air-water interaction Atmospheric pressure Complexity Distribution system Hydraulics Mathematical analysis Numerical model One-dimensional modeling Pipeline Transient flow |
description |
An air pocket’s behaviour inside of a pipeline during transient conditions is of great importance due to its effect on the safety of the hydraulic system and the complexity of modeling its behaviour. The emptying process from water pipelines needs more assessment because the generation of troughs of subatmospheric pressure may lead to serious damage. This research studies the air pocket parameters during an emptying process from a water pipeline. A well-equipped experimental facility was used to measure the pressure and the velocity change throughout the water emptying for different air pocket sizes and valve opening times. The phenomenon was simulated using a one-dimensional (1D) developed model based on the rigid formulation with a non-variable friction factor and a constant pipe diameter. The mathematical model shows good ability in predicting the trough of subatmospheric pressure value as the most important parameter which can affect the safety of hydraulic systems. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Urban Water Journal; Vol. 15, Núm. 4; pp. 346-352 |
dc.identifier.issn.none.fl_str_mv |
1573062X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8885 |
dc.identifier.doi.none.fl_str_mv |
10.1080/1573062X.2018.1475578 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57193337460 56074282700 57205420202 35568240000 |
identifier_str_mv |
Urban Water Journal; Vol. 15, Núm. 4; pp. 346-352 1573062X 10.1080/1573062X.2018.1475578 Universidad Tecnológica de Bolívar Repositorio UTB 57193337460 56074282700 57205420202 35568240000 |
url |
https://hdl.handle.net/20.500.12585/8885 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048485972&doi=10.1080%2f1573062X.2018.1475578&partnerID=40&md5=38c76063ed42ca2a649d1dd7b7b7c19f |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8885/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021801774153728 |
spelling |
2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Urban Water Journal; Vol. 15, Núm. 4; pp. 346-3521573062Xhttps://hdl.handle.net/20.500.12585/888510.1080/1573062X.2018.1475578Universidad Tecnológica de BolívarRepositorio UTB57193337460560742827005720542020235568240000An air pocket’s behaviour inside of a pipeline during transient conditions is of great importance due to its effect on the safety of the hydraulic system and the complexity of modeling its behaviour. The emptying process from water pipelines needs more assessment because the generation of troughs of subatmospheric pressure may lead to serious damage. This research studies the air pocket parameters during an emptying process from a water pipeline. A well-equipped experimental facility was used to measure the pressure and the velocity change throughout the water emptying for different air pocket sizes and valve opening times. The phenomenon was simulated using a one-dimensional (1D) developed model based on the rigid formulation with a non-variable friction factor and a constant pipe diameter. The mathematical model shows good ability in predicting the trough of subatmospheric pressure value as the most important parameter which can affect the safety of hydraulic systems. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.This work was supported by the Fundación CEIBA - Gobernación de Bolívar, Colombia which covered the financial support for the doctoral student, Oscar E. Coronado-Hernández.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048485972&doi=10.1080%2f1573062X.2018.1475578&partnerID=40&md5=38c76063ed42ca2a649d1dd7b7b7c19fSubatmospheric pressure in a water draining pipeline with an air pocketinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air pocketAir-waterPipelines emptyingSubatmospheric pressureTransient flowWater distribution systemsAir-water interactionAtmospheric pressureComplexityDistribution systemHydraulicsMathematical analysisNumerical modelOne-dimensional modelingPipelineTransient flowCoronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Besharat M.Ramos H.M.Abreu, J., Cabrera, E., Izquierdo, J., Garc´ıa-Serra, J., Flow Modeling in Pressurized Systmes Revisited (1999) Journal of Hydraulic Engineering, 125 (11), pp. 1154-1169(2001) Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves, , 1st, Denver, Colorado: AWWABashiri-Atrabi, H., Hosoda, T., The Motion of Entrapped Air Cavities in Inclined Ducts (2015) Journal of Hydraulic Research, 53 (6), pp. 814-819Bousso, S., Daynou, M., Fuamba, M., Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature (2013) Journal of Hydraulic Engineering, 139 (4), pp. 385-396Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), p. 98Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Angulo-Hernández, F.N., Emptying Operation of Water Supply Networks (2018) Water, 10 (1), p. 22Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesis-Rey, P.L., Martínez-Solano, F.J., Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air (2018) Journal of Hydraulic Engineering, 144, p. 4Covas, D., Stoianov, I., Ramos, H.M., Graham, N., Maksimovi`C, C., Butler, D., Water Hammer in Pressurized Polyethylene Pipes: Conceptualmodel and Experimental Analysis (2010) Urban Water Journal, 1 (2), pp. 177-197Falvey, H., Air-Water Flow in Hydraulic Structures. A Water Resources Technical Publication Engineering Monograph No. 41 (1980) Technical Report, , Denver, Colorado: Water and Power Resources Service Engineering and Research CenterFuertes, V.S., (2001) Hydraulic transients with entrapped air pockets, , PhD diss, Department of Hydraulic Engineering, Polytechnic University of Valencia, SpainFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient Phenomena during the Emptying Process of a Single Pipe with Water-Air Interaction (2018) Accepted - Journal of Hydraulic ResearchHou, Q., Tijsseling, A., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vuković, S., van’t Westende, J., Experimental Investigation on Rapid Filling of a Large-Scale Pipeline (2014) Journal of Hydraulic Engineering, 140 (11)Hou, Q., Tijsseling, A.S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vukovi, S., Experimental Study of Filling and Emptying of a Large-Scale Pipeline (2012) (CASA-Report Vol. 12–15), , Eindhoven: Technische Universiteit Eindhoven,. InIzquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., Garcia-Serra, J., Pipeline Start-Up with Entrapped Air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590Karadžić, U., Strunjaš, F., Bergant, A., Mavrič, R., Buckstein, S., Developments in Pipeline Filling and Emptying Experimentation in a Laboratory Pipeline Apparatus (2015) In Proceedings of the 6th IAHR Meeting on WG Cavitation and Dynamic Problems (Ljubljana) (Novo Mesto), pp. 273-280Koppel, T., Laanearu, J., Annus, I., Raidmaa, M., Using Transient Flow Equations for Modelling of Filling and Emptying of Large-Scale Pipeline (2010) Water Distribution Systems Analysis (WDSA), Reston, VA: ASCE, pp. 112-121. , 12th Annual Conf. onLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., van’t Westende, J.M.C., Emptying of Large-Scale Pipeline by Pressurized Air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100Laanearu, J., Hou, Q., Annus, I., Tijsseling, A.S., Water-Column Mass Losses during the Emptying of a Large-Scale Pipeline by Pressurized Air (2015) Proceedings of the Estonian Academy of Sciences, 641. , InLaanearu, J., Van’t Westende, J., Hydraulic Characteristics of Test Rig Used in Filling and Emptying Experiments of Large-Scale PVC Pipeline (2010) Proceedings of the HYDRALAB III Joint User Meeting, , InLiu, D.Y., Zhou, L., Karney, B., Zhang, Q.F., Ou, C.Q., Rigid-Plug Elastic Water Model for Transient Pipe Flow with Entrapped Air Pocket (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal of Hydraulic Research, 53 (5), pp. 678-686Pozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A., Air Entrapped in Gravity Pipeline Systems (2010) Journal of Hydraulic Research, 48 (3), pp. 338-347Pozos-Estrada, O., Pothof, I., Fuentes-Mariles, O.A., Dominguez-Mora, R., Pedrozo-Acun˜a, A., Meli, R., Pen˜a, F., Failure of a Drainage Tunnel Caused by an Entrapped Air Pocket (2015) Urban Water Journal, 12 (6), pp. 446-454Pothof, I., Clemens, F., On Elongated Air Pockets in Downward Sloping Pipes (2010) Journal of Hydraulic Research, 48 (4), pp. 499-503Ramezani, L., Karney, B., Water Column Separation and Cavity Collapse for Pipelines Protected with Air Vacuum Valves: Understanding the Essential Wave Process (2017) Journal of Hydraulic Engineering, 143, p. 12Ramezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2015) Journal of Water Resources Planning and Management, 141, p. 10Ramezani, L., Karney, B., Malekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal of Water Resources Planning and Management, 142, p. 12Tijsseling, A., Hou, Q., Bozku¸s, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal of Pressure Vessel Technology, 138 (3), p. 031301Tran, P., Pressure Transients Caused by Air-Valve Closure while Filling Pipelines (2017) Journal of Hydraulic Engineering, 143, p. 2Vasconcelos, J.G., Klaver, P.R., Lautenbach, D.J., Flow Regime Transition Simulation Incorporating Entrapped Air Pocket Effects (2014) Urban Water Journal 12 (6): 488–501Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal of Hydraulic Engineering, 134 (7), pp. 984-992Wylie, E., Streeter, V., (1993) Fluid Transients in Systems, , Englewood Cliffs, New Jersey, USA: Ed. Prentice HallZhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Karney, B., Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8885/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8885oai:repositorio.utb.edu.co:20.500.12585/88852023-05-26 09:44:32.344Repositorio Institucional UTBrepositorioutb@utb.edu.co |