Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solution...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8920
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8920
- Palabra clave:
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d597b4b1bf5fd4634a64cb6a7d2acac3 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8920 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
spellingShingle |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title_short |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title_full |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title_fullStr |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title_full_unstemmed |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
title_sort |
Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON |
description |
In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solutions in (2+1) gravity sourced by a nonlinear electromagnetic field. The solutions are characterized by five parameters: mass M, angular momentum J, cosmological constant Λ, and two electromagnetic charges qα and qβ. Remarkably, the solution can be interpreted as a traversable wormhole, provided the fulfillment of certain inequalities by the characteristic parameters; fine-tuning of the cosmological constant leads to an extreme black hole, whereas by switching off one of the electromagnetic charges, we obtain the Bañados-Teitelboim-Zanelli (BTZ) black hole. © 2018 American Physical Society. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Physical Review D; Vol. 98, Núm. 10 |
dc.identifier.issn.none.fl_str_mv |
24700010 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8920 |
dc.identifier.doi.none.fl_str_mv |
10.1103/PhysRevD.98.104012 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55744418600 6701747290 |
identifier_str_mv |
Physical Review D; Vol. 98, Núm. 10 24700010 10.1103/PhysRevD.98.104012 Universidad Tecnológica de Bolívar Repositorio UTB 55744418600 6701747290 |
url |
https://hdl.handle.net/20.500.12585/8920 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057772233&doi=10.1103%2fPhysRevD.98.104012&partnerID=40&md5=0a6573cbebc63c34ae6fdd9e2e8fab3a |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8920/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021707295358976 |
spelling |
2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Physical Review D; Vol. 98, Núm. 1024700010https://hdl.handle.net/20.500.12585/892010.1103/PhysRevD.98.104012Universidad Tecnológica de BolívarRepositorio UTB557444186006701747290In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solutions in (2+1) gravity sourced by a nonlinear electromagnetic field. The solutions are characterized by five parameters: mass M, angular momentum J, cosmological constant Λ, and two electromagnetic charges qα and qβ. Remarkably, the solution can be interpreted as a traversable wormhole, provided the fulfillment of certain inequalities by the characteristic parameters; fine-tuning of the cosmological constant leads to an extreme black hole, whereas by switching off one of the electromagnetic charges, we obtain the Bañados-Teitelboim-Zanelli (BTZ) black hole. © 2018 American Physical Society.Recurso electrónicoapplication/pdfengAmerican Physical Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057772233&doi=10.1103%2fPhysRevD.98.104012&partnerID=40&md5=0a6573cbebc63c34ae6fdd9e2e8fab3aBlack hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETONinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Cañate P.Breton N.Witten, E., Three-dimensional Gravity RevisitedAchúcarro, A., Townsend, P.K., A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories (1986) Phys. Lett. B, 180, p. 89Carlip, S., (1998) Quantum Gravity in 2+1 Dimensions, , (Cambridge University Press, Cambridge, England)Birmingham, D., Sachs, I., Sen, S., Exact results for the BTZ black hole (2001) Int. J. Mod. Phys. D, 10, p. 833Bañados, M., Teitelboim, C., Zanelli, J., The Black Hole in Three Dimensional Spacetime (1992) Phys. Rev. Lett., 69, p. 1849Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J., Geometry of the (Equation presented) black hole (1993) Phys. Rev. D, 48, p. 1506Carlip, S., Conformal field theory, ((Equation presented))-dimensional gravity and the BTZ black hole (2005) Classical Quantum Gravity, 22, p. R85Heisenberg, W., Euler, H., Folgerungen aus der Diracschen theorie des positrons (1936) Z. Phys., 98, p. 714Born, M., Infeld, L., Foundations of the new field theory (1934) Proc. R. Soc. A, 144, p. 425Plebański, J.F., (1970) Lectures on Nonlinear Electrodynamics, , (Nordita, Copenhagen)Cataldo, M., García, A., Regular ((Equation presented))-dimensional black holes within nonlinear electrodynamics (2000) Phys. Rev. D, 61, p. 084003Bronnikov, K.A., Nonlinear electrodynamics, regular black holes and wormholes (2018) Int. J. Mod. Phys. D, 27, p. 1841005Arellano, A.V.B., Lobo, F.S.N., Evolving wormhole geometries within nonlinear electrodynamics (2006) Classical Quantum Gravity, 23, p. 5811Hendi, S.H., Wormhole solutions in the presence of nonlinear Maxwell field (2014) Adv. High Energy Phys., 2014, p. 697863Ayón, E., Cataldo, M., García, A., Electromagnetic fields in stationary cyclic symmetric (Equation presented) gravity (2005) Proceedings of the 10th PASCOS04 and Pran Nath Fest, pp. 554-558. , edited by G. Alverson, E. Barberis, P. Nath, and M. T. Vaughn (World Scientific, Singapore)García, A.A., Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutionsBlack holes (2009) Ann. Phys. (Amsterdam), 324, p. 2004García-Díaz, A., (2017) Exact Solutions in Three-Dimensional Gravity, , (Cambridge University Press, Cambridge, England)Hassaine, M., Martínez, C., Higher-dimensional charged black hole solutions with nonlinear electrodynamics source (2008) Classical Quantum Gravity, 25, p. 195023Gurtug, O., Mzharimousavi, S.H., Halilsoy, M., (Equation presented)-dimensional electrically charged black holes in Einstein-power-Maxwell theory (2012) Phys. Rev. D, 85, p. 104004Brown, J.D., Creighton, J., Mann, R.B., Temperature, energy, and heat capacity of asymptotically anti-de Sitter black holes (1994) Phys. Rev. D, 50, p. 6394Cañate, P., (2009) Soluciones Cíclicas en Relatividad General (Equation Presented) Acopladas A Electrodinámica No Lineal, , M.Sc. Thesis, CinvestavThorne, K., Morris, M., Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity (1988) Am. J. Phys., 56, p. 395Morris, M.S., Thorne, K.S., Yurtsever, U., Wormholes, Time Machines, and the Weak Energy Condition (1988) Phys. Rev. Lett., 61, p. 1446Arellano, A.V.B., Lobo, F.S.N., Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics (2006) Classical Quantum Gravity, 23, p. 7229Marciano, W.J., Time Variation of the Fundamental ""constants"" and Kaluza-Klein Theories (1984) Phys. Rev. Lett., 52, p. 489Calmet, X., Fritzsch, H., The cosmological evolution of the nucleon mass and the electroweak coupling constants (2002) Eur. Phys. J. C, 24, p. 639Flambaum, V.V., Variation of fundamental constants: Theory and observations (2007) Int. J. Mod. Phys. A, 22, p. 4937Uzan, J.P., The fundamental constants and their variation: Observational and theoretical status (2003) Rev. Mod. Phys., 75, p. 403Capozziello, S., De Ritis, R., Marino, A.A., A time-dependent cosmological constant phenomenology (1997) Nuovo Cimento Soc. Ital. Fis., B112, p. 1351Overduin, J.M., Cooperstock, F.I., Evolution of the scale factor with a variable cosmological term (1998) Phys. Rev. D, 58, p. 043506Liu, H., Wesson, P.S., Universe models with a variable cosmological constant and a big bounce (2001) Astrophys. J., 562, p. 1Ma, Y.-Z., Variable cosmological constant model: The reconstruction equations and constraints from current observational data (2008) Nucl. Phys., B804, p. 262Azri, H., Bounames, A., Cosmological consequences of a variable cosmological constant model (2017) Int. J. Mod. Phys. D, 26, p. 1750060http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8920/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8920oai:repositorio.utb.edu.co:20.500.12585/89202021-02-02 15:03:34.28Repositorio Institucional UTBrepositorioutb@utb.edu.co |