Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON

In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solution...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8920
Acceso en línea:
https://hdl.handle.net/20.500.12585/8920
Palabra clave:
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d597b4b1bf5fd4634a64cb6a7d2acac3
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8920
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
spellingShingle Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title_short Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title_full Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title_fullStr Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title_full_unstemmed Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
title_sort Black hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETON
description In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solutions in (2+1) gravity sourced by a nonlinear electromagnetic field. The solutions are characterized by five parameters: mass M, angular momentum J, cosmological constant Λ, and two electromagnetic charges qα and qβ. Remarkably, the solution can be interpreted as a traversable wormhole, provided the fulfillment of certain inequalities by the characteristic parameters; fine-tuning of the cosmological constant leads to an extreme black hole, whereas by switching off one of the electromagnetic charges, we obtain the Bañados-Teitelboim-Zanelli (BTZ) black hole. © 2018 American Physical Society.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Physical Review D; Vol. 98, Núm. 10
dc.identifier.issn.none.fl_str_mv 24700010
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8920
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevD.98.104012
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55744418600
6701747290
identifier_str_mv Physical Review D; Vol. 98, Núm. 10
24700010
10.1103/PhysRevD.98.104012
Universidad Tecnológica de Bolívar
Repositorio UTB
55744418600
6701747290
url https://hdl.handle.net/20.500.12585/8920
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057772233&doi=10.1103%2fPhysRevD.98.104012&partnerID=40&md5=0a6573cbebc63c34ae6fdd9e2e8fab3a
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8920/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707295358976
spelling 2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Physical Review D; Vol. 98, Núm. 1024700010https://hdl.handle.net/20.500.12585/892010.1103/PhysRevD.98.104012Universidad Tecnológica de BolívarRepositorio UTB557444186006701747290In this paper we present two results in (2+1) gravity coupled to nonlinear electrodynamics. First we determine the general form of the electromagnetic field tensor in (2+1) gravity coupled to nonlinear electrodynamics in stationary cyclic spacetimes. Secondly, we determine a family of exact solutions in (2+1) gravity sourced by a nonlinear electromagnetic field. The solutions are characterized by five parameters: mass M, angular momentum J, cosmological constant Λ, and two electromagnetic charges qα and qβ. Remarkably, the solution can be interpreted as a traversable wormhole, provided the fulfillment of certain inequalities by the characteristic parameters; fine-tuning of the cosmological constant leads to an extreme black hole, whereas by switching off one of the electromagnetic charges, we obtain the Bañados-Teitelboim-Zanelli (BTZ) black hole. © 2018 American Physical Society.Recurso electrónicoapplication/pdfengAmerican Physical Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057772233&doi=10.1103%2fPhysRevD.98.104012&partnerID=40&md5=0a6573cbebc63c34ae6fdd9e2e8fab3aBlack hole-wormhole transition in (2+1)-dimensional Einstein-anti-de Sitter gravity coupled to nonlinear electrodynamics BLACK HOLE-WORMHOLE TRANSITION in (2+1)- ⋯ PEDRO CAÑATE and NORA BRETONinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Cañate P.Breton N.Witten, E., Three-dimensional Gravity RevisitedAchúcarro, A., Townsend, P.K., A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories (1986) Phys. Lett. B, 180, p. 89Carlip, S., (1998) Quantum Gravity in 2+1 Dimensions, , (Cambridge University Press, Cambridge, England)Birmingham, D., Sachs, I., Sen, S., Exact results for the BTZ black hole (2001) Int. J. Mod. Phys. D, 10, p. 833Bañados, M., Teitelboim, C., Zanelli, J., The Black Hole in Three Dimensional Spacetime (1992) Phys. Rev. Lett., 69, p. 1849Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J., Geometry of the (Equation presented) black hole (1993) Phys. Rev. D, 48, p. 1506Carlip, S., Conformal field theory, ((Equation presented))-dimensional gravity and the BTZ black hole (2005) Classical Quantum Gravity, 22, p. R85Heisenberg, W., Euler, H., Folgerungen aus der Diracschen theorie des positrons (1936) Z. Phys., 98, p. 714Born, M., Infeld, L., Foundations of the new field theory (1934) Proc. R. Soc. A, 144, p. 425Plebański, J.F., (1970) Lectures on Nonlinear Electrodynamics, , (Nordita, Copenhagen)Cataldo, M., García, A., Regular ((Equation presented))-dimensional black holes within nonlinear electrodynamics (2000) Phys. Rev. D, 61, p. 084003Bronnikov, K.A., Nonlinear electrodynamics, regular black holes and wormholes (2018) Int. J. Mod. Phys. D, 27, p. 1841005Arellano, A.V.B., Lobo, F.S.N., Evolving wormhole geometries within nonlinear electrodynamics (2006) Classical Quantum Gravity, 23, p. 5811Hendi, S.H., Wormhole solutions in the presence of nonlinear Maxwell field (2014) Adv. High Energy Phys., 2014, p. 697863Ayón, E., Cataldo, M., García, A., Electromagnetic fields in stationary cyclic symmetric (Equation presented) gravity (2005) Proceedings of the 10th PASCOS04 and Pran Nath Fest, pp. 554-558. , edited by G. Alverson, E. Barberis, P. Nath, and M. T. Vaughn (World Scientific, Singapore)García, A.A., Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutionsBlack holes (2009) Ann. Phys. (Amsterdam), 324, p. 2004García-Díaz, A., (2017) Exact Solutions in Three-Dimensional Gravity, , (Cambridge University Press, Cambridge, England)Hassaine, M., Martínez, C., Higher-dimensional charged black hole solutions with nonlinear electrodynamics source (2008) Classical Quantum Gravity, 25, p. 195023Gurtug, O., Mzharimousavi, S.H., Halilsoy, M., (Equation presented)-dimensional electrically charged black holes in Einstein-power-Maxwell theory (2012) Phys. Rev. D, 85, p. 104004Brown, J.D., Creighton, J., Mann, R.B., Temperature, energy, and heat capacity of asymptotically anti-de Sitter black holes (1994) Phys. Rev. D, 50, p. 6394Cañate, P., (2009) Soluciones Cíclicas en Relatividad General (Equation Presented) Acopladas A Electrodinámica No Lineal, , M.Sc. Thesis, CinvestavThorne, K., Morris, M., Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity (1988) Am. J. Phys., 56, p. 395Morris, M.S., Thorne, K.S., Yurtsever, U., Wormholes, Time Machines, and the Weak Energy Condition (1988) Phys. Rev. Lett., 61, p. 1446Arellano, A.V.B., Lobo, F.S.N., Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics (2006) Classical Quantum Gravity, 23, p. 7229Marciano, W.J., Time Variation of the Fundamental ""constants"" and Kaluza-Klein Theories (1984) Phys. Rev. Lett., 52, p. 489Calmet, X., Fritzsch, H., The cosmological evolution of the nucleon mass and the electroweak coupling constants (2002) Eur. Phys. J. C, 24, p. 639Flambaum, V.V., Variation of fundamental constants: Theory and observations (2007) Int. J. Mod. Phys. A, 22, p. 4937Uzan, J.P., The fundamental constants and their variation: Observational and theoretical status (2003) Rev. Mod. Phys., 75, p. 403Capozziello, S., De Ritis, R., Marino, A.A., A time-dependent cosmological constant phenomenology (1997) Nuovo Cimento Soc. Ital. Fis., B112, p. 1351Overduin, J.M., Cooperstock, F.I., Evolution of the scale factor with a variable cosmological term (1998) Phys. Rev. D, 58, p. 043506Liu, H., Wesson, P.S., Universe models with a variable cosmological constant and a big bounce (2001) Astrophys. J., 562, p. 1Ma, Y.-Z., Variable cosmological constant model: The reconstruction equations and constraints from current observational data (2008) Nucl. Phys., B804, p. 262Azri, H., Bounames, A., Cosmological consequences of a variable cosmological constant model (2017) Int. J. Mod. Phys. D, 26, p. 1750060http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8920/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8920oai:repositorio.utb.edu.co:20.500.12585/89202021-02-02 15:03:34.28Repositorio Institucional UTBrepositorioutb@utb.edu.co