Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures

The problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters c...

Full description

Autores:
Arenas-Acuña, Camilo Andres
Rodriguez-Contreras, Jonathan Andres
Montoya, Oscar Danilo
Rivas-Trujillo, Edwin
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10383
Acceso en línea:
https://hdl.handle.net/20.500.12585/10383
https://doi.org/ 10.3390/computers10100124
Palabra clave:
Black-hole optimization
Parameter estimation
Single-phase transformers
Square error minimization
Nonlinear programming model
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d3ebdc04dd6b9938e8f1221f62b4d5d1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10383
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
title Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
spellingShingle Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
Black-hole optimization
Parameter estimation
Single-phase transformers
Square error minimization
Nonlinear programming model
LEMB
title_short Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
title_full Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
title_fullStr Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
title_full_unstemmed Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
title_sort Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
dc.creator.fl_str_mv Arenas-Acuña, Camilo Andres
Rodriguez-Contreras, Jonathan Andres
Montoya, Oscar Danilo
Rivas-Trujillo, Edwin
dc.contributor.author.none.fl_str_mv Arenas-Acuña, Camilo Andres
Rodriguez-Contreras, Jonathan Andres
Montoya, Oscar Danilo
Rivas-Trujillo, Edwin
dc.subject.keywords.es_CO.fl_str_mv Black-hole optimization
Parameter estimation
Single-phase transformers
Square error minimization
Nonlinear programming model
topic Black-hole optimization
Parameter estimation
Single-phase transformers
Square error minimization
Nonlinear programming model
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters considering only the voltage and the currents measured in the terminals of the transformer, a nonlinear optimization model that deals with the minimization of the mean square error among the measured and calculated voltage and current variables is formulated. The nonlinear programming model is solved through the implementation of a simple but efficient metaheuristic optimization technique known as the black-hole optimizer. Numerical simulations demonstrate that the proposed optimization method allows for the reduction in the estimation error among the measured and calculated variables when compared with methods that are well established in the literature such as particle swarm optimization and genetic algorithms, among others. All the simulations were carried out in the MATLAB programming environment.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-09
dc.date.accessioned.none.fl_str_mv 2022-01-17T20:44:42Z
dc.date.available.none.fl_str_mv 2022-01-17T20:44:42Z
dc.date.submitted.none.fl_str_mv 2022-01-07
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.es_CO.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.es_CO.fl_str_mv Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10383
dc.identifier.doi.none.fl_str_mv https://doi.org/ 10.3390/computers10100124
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10383
https://doi.org/ 10.3390/computers10100124
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Computers - vol. 10 n° 10
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/1/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/4/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/5/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.jpg
bitstream.checksum.fl_str_mv 1752aa4b2ba0bd759219ceb0013e75c2
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f6806b6607c335047869c74717514083
f30cfe22b2f4abcb8522f809cd7c5b13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021803711922176
spelling Arenas-Acuña, Camilo Andresc56b06cc-5d67-40bd-affd-4cb59e6acaf4Rodriguez-Contreras, Jonathan Andres639b53cf-5c38-4b5a-bb5f-726c2252aefcMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Rivas-Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2022-01-17T20:44:42Z2022-01-17T20:44:42Z2021-10-092022-01-07Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124https://hdl.handle.net/20.500.12585/10383https://doi.org/ 10.3390/computers10100124Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters considering only the voltage and the currents measured in the terminals of the transformer, a nonlinear optimization model that deals with the minimization of the mean square error among the measured and calculated voltage and current variables is formulated. The nonlinear programming model is solved through the implementation of a simple but efficient metaheuristic optimization technique known as the black-hole optimizer. Numerical simulations demonstrate that the proposed optimization method allows for the reduction in the estimation error among the measured and calculated variables when compared with methods that are well established in the literature such as particle swarm optimization and genetic algorithms, among others. All the simulations were carried out in the MATLAB programming environment.17 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers - vol. 10 n° 10Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measuresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Black-hole optimizationParameter estimationSingle-phase transformersSquare error minimizationNonlinear programming modelLEMBCartagena de IndiasChapman, S. Electric Machinery Fundamentals; McGraw-Hill Series in Electrical and Computer Engineering; McGraw-Hill Companies, Incorporated: New York, NY, USA, 2005.Pinzón, S.; Yánez, S.; Ruiz, M. Optimal Location of Transformers in Electrical Distribution Networks Using Geographic Information Systems. Enfoque UTE 2020, 11, 84–95Merritt, S.; Chaitkin, S. Efficiency standards for low voltage substation transformers. In Proceedings of the Conference Record of the 2003 Annual Pulp and Paper Industry Technical Conference, Charleston, SC, USA, 16–20 June 2003Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419Bocanegra, S.Y.; Montoya, O.D.; Molina-Cabrera, A. Parameter estimation in singe-phase transformers employing voltage and current measures. Rev. UIS Ing. 2020, 19, 63–75Abdelwanis, M.I.; Abaza, A.; El-Sehiemy, R.A.; Ibrahim, M.N.; Rezk, H. Parameter Estimation of Electric Power Transformers Using Coyote Optimization Algorithm with Experimental Verification. IEEE Access 2020, 8, 50036–50044Meister, D.; de Oliveira, M.A.G. The use of the Least Squares Method to estimate the model parameters of a transformer. In Proceedings of the 2009 10th International Conference on Electrical Power Quality and Utilisation, Lodz, Poland, 15–17 September 2009; pp. 1–6.Padma, S.; Subramanian, S. Parameter estimation of single phase core type transformer using bacterial foraging algorithm. Engineering 2010, 2, 917Mossad, M.I.; Azab, M.; Abu-Siada, A. Transformer parameters estimation from nameplate data using evolutionary programming techniques. IEEE Trans. Power Deliv. 2014, 29, 2118–2123Illias, H.; Mou, K.; Bakar, A. Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm Evol. Comput. 2017, 36, 18–26Bhowmick, D.; Manna, M.; Chowdhury, S.K. Estimation of equivalent circuit parameters of transformer and induction motor using PSO. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6Yilmaz Acar, Z.; Oksar, M.; Basciftci, F. Multi-Objective Artificial Bee Colony Algorithm to Estimate Transformer Equivalent Circuit Parameters. Period. Eng. Nat. Sci. 2017, 5, 271–277Calasan, M.; Mujiˇci´c, D.; Rubeži´c, V.; Radulovi´c, M. Estimation of equivalent circuit parameters of single-phase transformer by ´ using chaotic optimization approach. Energies 2019, 12, 1697Youssef, H.; Hassan, M.H.; Kamel, S.; Elsayed, S.K. Parameter Estimation of Single Phase Transformer Using Jellyfish Search Optimizer Algorithm. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Valparaíso, Chile, 22–26 March 2021; pp. 1–4.Bouchekara, H. Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 2014, 24, 879–888Guzmán, M.A.; Peña, C. Algoritmos bioinspirados en la planeación off-line de trayectorias de robots seriales. Vis. Electron. 2013, 7, 27–39Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184Soto, R.; Crawford, B.; Olivares, R.; Taramasco, C.; Figueroa, I.; Gómez, Á.; Castro, C.; Paredes, F. Adaptive Black Hole Algorithm for Solving the Set Covering Problem. Math. Probl. Eng. 2018, 2018, 1–23Velasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32Bouchekara, H.R. Optimal design of electromagnetic devices using a black-hole-based optimization technique. IEEE Trans. Magn. 2013, 49, 5709–5714.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALBlack-Hole Optimization Applied to the Parametric Estimation.pdfBlack-Hole Optimization Applied to the Parametric Estimation.pdfapplication/pdf682693https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/1/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf1752aa4b2ba0bd759219ceb0013e75c2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTBlack-Hole Optimization Applied to the Parametric Estimation.pdf.txtBlack-Hole Optimization Applied to the Parametric Estimation.pdf.txtExtracted texttext/plain52300https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/4/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.txtf6806b6607c335047869c74717514083MD54THUMBNAILBlack-Hole Optimization Applied to the Parametric Estimation.pdf.jpgBlack-Hole Optimization Applied to the Parametric Estimation.pdf.jpgGenerated Thumbnailimage/jpeg101185https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/5/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.jpgf30cfe22b2f4abcb8522f809cd7c5b13MD5520.500.12585/10383oai:repositorio.utb.edu.co:20.500.12585/103832022-01-18 01:45:21.388Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=