Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures
The problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters c...
- Autores:
-
Arenas-Acuña, Camilo Andres
Rodriguez-Contreras, Jonathan Andres
Montoya, Oscar Danilo
Rivas-Trujillo, Edwin
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10383
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10383
https://doi.org/ 10.3390/computers10100124
- Palabra clave:
- Black-hole optimization
Parameter estimation
Single-phase transformers
Square error minimization
Nonlinear programming model
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d3ebdc04dd6b9938e8f1221f62b4d5d1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10383 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
title |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
spellingShingle |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures Black-hole optimization Parameter estimation Single-phase transformers Square error minimization Nonlinear programming model LEMB |
title_short |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
title_full |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
title_fullStr |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
title_full_unstemmed |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
title_sort |
Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures |
dc.creator.fl_str_mv |
Arenas-Acuña, Camilo Andres Rodriguez-Contreras, Jonathan Andres Montoya, Oscar Danilo Rivas-Trujillo, Edwin |
dc.contributor.author.none.fl_str_mv |
Arenas-Acuña, Camilo Andres Rodriguez-Contreras, Jonathan Andres Montoya, Oscar Danilo Rivas-Trujillo, Edwin |
dc.subject.keywords.es_CO.fl_str_mv |
Black-hole optimization Parameter estimation Single-phase transformers Square error minimization Nonlinear programming model |
topic |
Black-hole optimization Parameter estimation Single-phase transformers Square error minimization Nonlinear programming model LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters considering only the voltage and the currents measured in the terminals of the transformer, a nonlinear optimization model that deals with the minimization of the mean square error among the measured and calculated voltage and current variables is formulated. The nonlinear programming model is solved through the implementation of a simple but efficient metaheuristic optimization technique known as the black-hole optimizer. Numerical simulations demonstrate that the proposed optimization method allows for the reduction in the estimation error among the measured and calculated variables when compared with methods that are well established in the literature such as particle swarm optimization and genetic algorithms, among others. All the simulations were carried out in the MATLAB programming environment. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-09 |
dc.date.accessioned.none.fl_str_mv |
2022-01-17T20:44:42Z |
dc.date.available.none.fl_str_mv |
2022-01-17T20:44:42Z |
dc.date.submitted.none.fl_str_mv |
2022-01-07 |
dc.type.driver.es_CO.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.es_CO.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.es_CO.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.es_CO.fl_str_mv |
Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10383 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/ 10.3390/computers10100124 |
dc.identifier.instname.es_CO.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.es_CO.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10383 https://doi.org/ 10.3390/computers10100124 |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.es_CO.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
17 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.place.es_CO.fl_str_mv |
Cartagena de Indias |
dc.source.es_CO.fl_str_mv |
Computers - vol. 10 n° 10 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/1/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/4/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/5/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.jpg |
bitstream.checksum.fl_str_mv |
1752aa4b2ba0bd759219ceb0013e75c2 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 f6806b6607c335047869c74717514083 f30cfe22b2f4abcb8522f809cd7c5b13 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021803711922176 |
spelling |
Arenas-Acuña, Camilo Andresc56b06cc-5d67-40bd-affd-4cb59e6acaf4Rodriguez-Contreras, Jonathan Andres639b53cf-5c38-4b5a-bb5f-726c2252aefcMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Rivas-Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2022-01-17T20:44:42Z2022-01-17T20:44:42Z2021-10-092022-01-07Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. https://doi.org/ 10.3390/computers10100124https://hdl.handle.net/20.500.12585/10383https://doi.org/ 10.3390/computers10100124Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of parametric estimation in single-phase transformers is addressed in this research from the point of view of metaheuristic optimization. The parameters of interest are the series resistance and reactance as well as the magnetization resistance and reactance. To obtain these parameters considering only the voltage and the currents measured in the terminals of the transformer, a nonlinear optimization model that deals with the minimization of the mean square error among the measured and calculated voltage and current variables is formulated. The nonlinear programming model is solved through the implementation of a simple but efficient metaheuristic optimization technique known as the black-hole optimizer. Numerical simulations demonstrate that the proposed optimization method allows for the reduction in the estimation error among the measured and calculated variables when compared with methods that are well established in the literature such as particle swarm optimization and genetic algorithms, among others. All the simulations were carried out in the MATLAB programming environment.17 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers - vol. 10 n° 10Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measuresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Black-hole optimizationParameter estimationSingle-phase transformersSquare error minimizationNonlinear programming modelLEMBCartagena de IndiasChapman, S. Electric Machinery Fundamentals; McGraw-Hill Series in Electrical and Computer Engineering; McGraw-Hill Companies, Incorporated: New York, NY, USA, 2005.Pinzón, S.; Yánez, S.; Ruiz, M. Optimal Location of Transformers in Electrical Distribution Networks Using Geographic Information Systems. Enfoque UTE 2020, 11, 84–95Merritt, S.; Chaitkin, S. Efficiency standards for low voltage substation transformers. In Proceedings of the Conference Record of the 2003 Annual Pulp and Paper Industry Technical Conference, Charleston, SC, USA, 16–20 June 2003Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419Bocanegra, S.Y.; Montoya, O.D.; Molina-Cabrera, A. Parameter estimation in singe-phase transformers employing voltage and current measures. Rev. UIS Ing. 2020, 19, 63–75Abdelwanis, M.I.; Abaza, A.; El-Sehiemy, R.A.; Ibrahim, M.N.; Rezk, H. Parameter Estimation of Electric Power Transformers Using Coyote Optimization Algorithm with Experimental Verification. IEEE Access 2020, 8, 50036–50044Meister, D.; de Oliveira, M.A.G. The use of the Least Squares Method to estimate the model parameters of a transformer. In Proceedings of the 2009 10th International Conference on Electrical Power Quality and Utilisation, Lodz, Poland, 15–17 September 2009; pp. 1–6.Padma, S.; Subramanian, S. Parameter estimation of single phase core type transformer using bacterial foraging algorithm. Engineering 2010, 2, 917Mossad, M.I.; Azab, M.; Abu-Siada, A. Transformer parameters estimation from nameplate data using evolutionary programming techniques. IEEE Trans. Power Deliv. 2014, 29, 2118–2123Illias, H.; Mou, K.; Bakar, A. Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm Evol. Comput. 2017, 36, 18–26Bhowmick, D.; Manna, M.; Chowdhury, S.K. Estimation of equivalent circuit parameters of transformer and induction motor using PSO. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6Yilmaz Acar, Z.; Oksar, M.; Basciftci, F. Multi-Objective Artificial Bee Colony Algorithm to Estimate Transformer Equivalent Circuit Parameters. Period. Eng. Nat. Sci. 2017, 5, 271–277Calasan, M.; Mujiˇci´c, D.; Rubeži´c, V.; Radulovi´c, M. Estimation of equivalent circuit parameters of single-phase transformer by ´ using chaotic optimization approach. Energies 2019, 12, 1697Youssef, H.; Hassan, M.H.; Kamel, S.; Elsayed, S.K. Parameter Estimation of Single Phase Transformer Using Jellyfish Search Optimizer Algorithm. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Valparaíso, Chile, 22–26 March 2021; pp. 1–4.Bouchekara, H. Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 2014, 24, 879–888Guzmán, M.A.; Peña, C. Algoritmos bioinspirados en la planeación off-line de trayectorias de robots seriales. Vis. Electron. 2013, 7, 27–39Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184Soto, R.; Crawford, B.; Olivares, R.; Taramasco, C.; Figueroa, I.; Gómez, Á.; Castro, C.; Paredes, F. Adaptive Black Hole Algorithm for Solving the Set Covering Problem. Math. Probl. Eng. 2018, 2018, 1–23Velasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32Bouchekara, H.R. Optimal design of electromagnetic devices using a black-hole-based optimization technique. IEEE Trans. Magn. 2013, 49, 5709–5714.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALBlack-Hole Optimization Applied to the Parametric Estimation.pdfBlack-Hole Optimization Applied to the Parametric Estimation.pdfapplication/pdf682693https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/1/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf1752aa4b2ba0bd759219ceb0013e75c2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTBlack-Hole Optimization Applied to the Parametric Estimation.pdf.txtBlack-Hole Optimization Applied to the Parametric Estimation.pdf.txtExtracted texttext/plain52300https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/4/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.txtf6806b6607c335047869c74717514083MD54THUMBNAILBlack-Hole Optimization Applied to the Parametric Estimation.pdf.jpgBlack-Hole Optimization Applied to the Parametric Estimation.pdf.jpgGenerated Thumbnailimage/jpeg101185https://repositorio.utb.edu.co/bitstream/20.500.12585/10383/5/Black-Hole%20Optimization%20Applied%20to%20the%20Parametric%20Estimation.pdf.jpgf30cfe22b2f4abcb8522f809cd7c5b13MD5520.500.12585/10383oai:repositorio.utb.edu.co:20.500.12585/103832022-01-18 01:45:21.388Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |