Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)

Convective drying is a conventional method to prolong the shelf-life of foods that could negatively affect the product quality due to the long exposure time to high temperature. Ultrasound (US) has been used for reducing the drying time while maintaining the product quality. In this study a Box-Behn...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8891
Acceso en línea:
https://hdl.handle.net/20.500.12585/8891
Palabra clave:
Analysis of variance (ANOVA)
Atmospheric temperature
Carbon footprint
Color
Colorimetry
Dehydration
Energy utilization
Fruits
Heat convection
Quality control
Surface properties
Thermal processing (foods)
Titration
Ultrasonics
Conventional methods
Dehydration process
Hot air temperature
Optimized conditions
Quadratic regression
Quality parameters
Response surface methodology
Statistical testing
Drying
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d368e7c611b9463adc99c12b400abecd
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8891
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
title Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
spellingShingle Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
Analysis of variance (ANOVA)
Atmospheric temperature
Carbon footprint
Color
Colorimetry
Dehydration
Energy utilization
Fruits
Heat convection
Quality control
Surface properties
Thermal processing (foods)
Titration
Ultrasonics
Conventional methods
Dehydration process
Hot air temperature
Optimized conditions
Quadratic regression
Quality parameters
Response surface methodology
Statistical testing
Drying
title_short Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
title_full Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
title_fullStr Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
title_full_unstemmed Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
title_sort Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
dc.subject.keywords.none.fl_str_mv Analysis of variance (ANOVA)
Atmospheric temperature
Carbon footprint
Color
Colorimetry
Dehydration
Energy utilization
Fruits
Heat convection
Quality control
Surface properties
Thermal processing (foods)
Titration
Ultrasonics
Conventional methods
Dehydration process
Hot air temperature
Optimized conditions
Quadratic regression
Quality parameters
Response surface methodology
Statistical testing
Drying
topic Analysis of variance (ANOVA)
Atmospheric temperature
Carbon footprint
Color
Colorimetry
Dehydration
Energy utilization
Fruits
Heat convection
Quality control
Surface properties
Thermal processing (foods)
Titration
Ultrasonics
Conventional methods
Dehydration process
Hot air temperature
Optimized conditions
Quadratic regression
Quality parameters
Response surface methodology
Statistical testing
Drying
description Convective drying is a conventional method to prolong the shelf-life of foods that could negatively affect the product quality due to the long exposure time to high temperature. Ultrasound (US) has been used for reducing the drying time while maintaining the product quality. In this study a Box-Behnken design of Response Surface Methodology (RSM) was used to evaluate the effects of US time-frequency (t), US power level (Pot), and hot air temperature (T) on the drying process time (DPT), apparent density (AD), and color difference (ΔE) of the dried mango slices (10.0 ± 1.0% wet basis). Fisher's statistical testing was performed for the analysis of variance (ANOVA) for quadratic regression equations. The optimization goals were to minimize the responses. Modeled optimized conditions were 52–55 °C, 45–60 W, and 3 min/30 min for T, Pot, and t, respectively. Energy consumption and carbon footprint were also estimated during the validation of the optimal drying conditions. Practical applications: This research explored the use of response surface methodology polynomial models fitted to the experimental data of US assisted drying assays to find the best values of air temperature, time-frequency, and power of sonication for minimization of the drying process time (DPT) apparent density, and color difference of mango slices. The results specified ranges for the input-variables where lower DPT and properly dried mango quality parameters co-exist with important reductions in operational costs and carbon foot-print compared with those estimated for conventional dehydration process. These findings are of interest toward the development of greener and more sustainable food drying processes. © 2017 Wiley Periodicals, Inc.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:34Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:34Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Food Process Engineering; Vol. 41, Núm. 1
dc.identifier.issn.none.fl_str_mv 01458876
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8891
dc.identifier.doi.none.fl_str_mv 10.1111/jfpe.12634
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57196035802
57196030571
24338999200
identifier_str_mv Journal of Food Process Engineering; Vol. 41, Núm. 1
01458876
10.1111/jfpe.12634
Universidad Tecnológica de Bolívar
Repositorio UTB
57196035802
57196030571
24338999200
url https://hdl.handle.net/20.500.12585/8891
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing Inc.
publisher.none.fl_str_mv Blackwell Publishing Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031107704&doi=10.1111%2fjfpe.12634&partnerID=40&md5=5bc2c500dfc5e0b25eb8b53a037bb343
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8891/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397590954246144
spelling 2020-03-26T16:32:34Z2020-03-26T16:32:34Z2018Journal of Food Process Engineering; Vol. 41, Núm. 101458876https://hdl.handle.net/20.500.12585/889110.1111/jfpe.12634Universidad Tecnológica de BolívarRepositorio UTB571960358025719603057124338999200Convective drying is a conventional method to prolong the shelf-life of foods that could negatively affect the product quality due to the long exposure time to high temperature. Ultrasound (US) has been used for reducing the drying time while maintaining the product quality. In this study a Box-Behnken design of Response Surface Methodology (RSM) was used to evaluate the effects of US time-frequency (t), US power level (Pot), and hot air temperature (T) on the drying process time (DPT), apparent density (AD), and color difference (ΔE) of the dried mango slices (10.0 ± 1.0% wet basis). Fisher's statistical testing was performed for the analysis of variance (ANOVA) for quadratic regression equations. The optimization goals were to minimize the responses. Modeled optimized conditions were 52–55 °C, 45–60 W, and 3 min/30 min for T, Pot, and t, respectively. Energy consumption and carbon footprint were also estimated during the validation of the optimal drying conditions. Practical applications: This research explored the use of response surface methodology polynomial models fitted to the experimental data of US assisted drying assays to find the best values of air temperature, time-frequency, and power of sonication for minimization of the drying process time (DPT) apparent density, and color difference of mango slices. The results specified ranges for the input-variables where lower DPT and properly dried mango quality parameters co-exist with important reductions in operational costs and carbon foot-print compared with those estimated for conventional dehydration process. These findings are of interest toward the development of greener and more sustainable food drying processes. © 2017 Wiley Periodicals, Inc.The authors acknowledge the financial support of the FONTAGRO (Project FTG/RF-1330-RG) and UNIVERSIDAD NACIONAL DE COLOMBIA (Project HERMES 34573).Recurso electrónicoapplication/pdfengBlackwell Publishing Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85031107704&doi=10.1111%2fjfpe.12634&partnerID=40&md5=5bc2c500dfc5e0b25eb8b53a037bb343Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Analysis of variance (ANOVA)Atmospheric temperatureCarbon footprintColorColorimetryDehydrationEnergy utilizationFruitsHeat convectionQuality controlSurface propertiesThermal processing (foods)TitrationUltrasonicsConventional methodsDehydration processHot air temperatureOptimized conditionsQuadratic regressionQuality parametersResponse surface methodologyStatistical testingDryingMéndez-Calderón E.K.Ocampo-Castaño J.C.Orrego C.E.Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., Versteeg, C., Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system (2008) Innovative Food Science & Emerging Technologies, 9 (2), pp. 155-160. , http://doi.org/10.1016/j.ifset.2007.05.005Beck, S., Sabarez, H., Gaukel, V., Knoerzer, K., Enhancement of convective drying by application of airborne ultrasound - A response surface approach (2014) Ultrasonics Sonochemistry, 21 (6), pp. 2144-2150. , http://doi.org/10.1016/j.ultsonch.2014.02.013Chong, C.H., Law, C.L., Figiel, A., Wojdylo, A., Oziemblowski, M., Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods (2013) Food Chemistry, 141 (4), pp. 3889-3896. , http://doi.org/10.1016/j.foodchem.2013.06.042Cohen, J.S., Yang, T.C.S., Progress in food dehydration (1995) Trends in Food Science & Technology, 6 (1), pp. 20-25. , http://doi.org/10.1016/S0924–2244(00)88913-XCorzo, O., Álvarez, C., Color change kinetics of mango at different maturity stages during air drying (2014) Journal of Food Processing and Preservation, 38 (1), pp. 508-517. , http://doi.org/10.1111/j.1745–4549.2012.00801.xFernandes, F., Linhares, F., Rodrigues, S., Ultrasound as pre-treatment for drying of pineapple (2008) Ultrasonics Sonochemistry, 15 (6), pp. 1049-1054. , http://doi.org/10.1016/j.ultsonch.2008.03.009Fernandes, F., Rodrigues, S., Ultrasound as pre-treatment for drying of fruits: Dehydration of banana (2007) Journal of Food Engineering, 82 (2), pp. 261-267. , http://doi.org/10.1016/j.jfoodeng.2007.02.032Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., Witrowa-Rajchert, D., Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple (2016) Journal of Food Process Engineering, 39 (3), pp. 256-265. , http://doi.org/10.1111/jfpe.12217Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., Garcia-Perez, J.V., Air-borne ultrasound application in the convective drying of strawberry (2014) Journal of Food Engineering, 128, pp. 132-139. , http://doi.org/10.1016/j.jfoodeng.2013.12.021García-Pérez, J.V., Ozuna, C., Ortuño, C., Cárcel, J.A., Mulet, A., Modeling ultrasonically assisted convective drying of eggplant (2011) Drying Technology, 29 (13), pp. 1499-1509. , http://doi.org/10.1080/07373937.2011.576321Garcia-Perez, J.V., Ortuño, C., Puig, A., Carcel, J.A., Perez-Munuera, I., Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying (2012) Food and Bioprocess Technology, 5 (6), pp. 2256-2265. , http://doi.org/10.1007/s11947-011-0645-0Legay, M., Gondrexon, N., Le Person, S., Boldo, P., Bontemps, A., Enhancement of heat transfer by ultrasound: Review and recent advances (2011) International Journal of Chemical Engineering, 11, pp. 1-17. , http://doi.org/10.1155/2011/670108Méndez, E.K., Orrego, C.E., Manrique, D.L., Gonzalez, J.D., Vallejo, D., Power ultrasound application on convective drying of banana (Musa paradisiaca) (2015) Mango (Mangifera indica L.) and Guava (Psidium guajava L.), 9 (10), pp. 973-978Mothibe, K.J., Wang, C.Y., Mujumdar, A.S., Zhang, M., Microwave-assisted pulse-spouted vacuum drying of apple cubes (2014) Drying Technology, 32 (15), pp. 1762-1768. , http://doi.org/10.1080/07373937.2014.934830Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., (2016) Response surface methodology: Process and product optimization using designed experiments, , (2nd. ed)., New York, John Wiley and Sons, IncRahman, S., Food properties handbook (2008) Agricultural and Food Engineering Technologies Service, , (2n ed.)., Florida, CRC PressRamírez, M.J., Giraldo, G.I., Orrego, C.E., Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates (2015) Powder Technology, 277, pp. 89-96. , http://doi.org/10.1016/j.powtec.2015.02.060Rodríguez-Ramiez, J., Mendez-Lagunas, L., López-Ortiz, A., Torres, S.S., True density and apparent density during the drying process for vegetables and fruits: A review (2012) Journal of Food Science, 77 (12), pp. 146-154. , http://doi.org/10.1111/j.1750–3841.2012.02990.xSabarez, H.T., Gallego-Juarez, J.A., Riera, E., Ultrasonic-assisted convective drying of apple slices (2012) Drying Technology, 30 (9), pp. 989-997. , http://doi.org/10.1080/07373937.2012.677083Schössler, K., Jäger, H., Knorr, D., Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper (2012) Journal of Food Engineering, 108 (1), pp. 103-110. , http://doi.org/10.1016/j.jfoodeng.2011.07.018(2016) Greenhouse gas equivalencies calculator, , https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator, Retrieved fromVillalpando Guzman, J., Herrera López, E.J., Amaya Delgado, L., Godoy Zaragoza, M.A., Mateos Díaz, J.C., Rodriguez González, J., Jaubert Garibay, S., Efecto del secado complementario con microondas sobre tres formas de rebanada de mango (2011) Revista Mexicana de Ingeniería Química, 10, pp. 281-290http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8891/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8891oai:repositorio.utb.edu.co:20.500.12585/88912021-02-02 14:56:27.903Repositorio Institucional UTBrepositorioutb@utb.edu.co