Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes

Pseudomonas spp. is considered one of the most successful bacterial genera due to its plasticity and metabolic versatility, which has allowed it to colonize different ecosystems, including Antarctica. The ability of Pseudomonas to adapt an d survive in the hostile conditions of the Antarctic makes t...

Full description

Autores:
Rubiano-Labrador, Carolina
Acevedo-Barrios, Rosa
García Lazaro, Alba
Ward Bowie, Lilia
Támara Acosta, Ana Karina
Mercado Molina, Blanca
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12200
Acceso en línea:
https://hdl.handle.net/20.500.12585/12200
Palabra clave:
Amylase
Cellulose
Extracellular Enzymes
Polar Environments
Protease
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d2fc4361b9c7c42b60cfaf84816f7ad9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12200
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
title Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
spellingShingle Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
Amylase
Cellulose
Extracellular Enzymes
Polar Environments
Protease
title_short Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
title_full Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
title_fullStr Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
title_full_unstemmed Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
title_sort Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes
dc.creator.fl_str_mv Rubiano-Labrador, Carolina
Acevedo-Barrios, Rosa
García Lazaro, Alba
Ward Bowie, Lilia
Támara Acosta, Ana Karina
Mercado Molina, Blanca
dc.contributor.author.none.fl_str_mv Rubiano-Labrador, Carolina
Acevedo-Barrios, Rosa
García Lazaro, Alba
Ward Bowie, Lilia
Támara Acosta, Ana Karina
Mercado Molina, Blanca
dc.subject.keywords.spa.fl_str_mv Amylase
Cellulose
Extracellular Enzymes
Polar Environments
Protease
topic Amylase
Cellulose
Extracellular Enzymes
Polar Environments
Protease
description Pseudomonas spp. is considered one of the most successful bacterial genera due to its plasticity and metabolic versatility, which has allowed it to colonize different ecosystems, including Antarctica. The ability of Pseudomonas to adapt an d survive in the hostile conditions of the Antarctic makes them a reservoir of enzymes that can be used in different biotechnological applications; however, research on this genus in Antarctica is still in its infancy. Therefore, the aim of this study was to isolate and characterise cold-adapted Pseudomonas from Livingston Island, Antarctica, and expl ore th eir abi l ity to produce cold-active hydrolytic enzymes. In the present study, we isolated seven cold-adapted bacteria related to the genus Pseudomonas. The isolated strains have the ability to produce hydrolytic enzymes. These results demonstrate that cold-adapted Pseudomonas from Antarctica are a promising source of cold-active enzymes with biotechnological potential.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:19:51Z
dc.date.available.none.fl_str_mv 2023-07-19T21:19:51Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Rubiano-Labrador, C., Acevedo-Barrios, R., Lazaro, A.G., Bowie, L.W., Támara Acosta, A.K., Molina, B.M. Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes (2022) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2022-July, . DOI: 10.18687/LACCEI2022.1.1.713
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12200
dc.identifier.doi.none.fl_str_mv 10.18687/LACCEI2022.1.1.713
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rubiano-Labrador, C., Acevedo-Barrios, R., Lazaro, A.G., Bowie, L.W., Támara Acosta, A.K., Molina, B.M. Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes (2022) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2022-July, . DOI: 10.18687/LACCEI2022.1.1.713
10.18687/LACCEI2022.1.1.713
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12200
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/1/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/4/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/5/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.jpg
bitstream.checksum.fl_str_mv b3baa3cd98943ec9345f5449f285ebc8
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f80505c2cf51d093e1376e078e2c278d
27fbc297692879f59ab7d61a6ef00935
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021769964552192
spelling Rubiano-Labrador, Carolina31348231-1903-47c5-bddf-35cba55f443cAcevedo-Barrios, Rosa0680fd94-2a5f-4443-92a7-ce1ab0f2fd6dGarcía Lazaro, Alba8ac94db2-6b68-4ebc-a46a-464bd210b95aWard Bowie, Liliaf714a147-7087-4d2e-8e23-f5f4c09bf025Támara Acosta, Ana Karina922ab363-2db5-4a45-a907-7bdfe72c62d5Mercado Molina, Blanca471d9a9b-3de3-4a7d-ac25-ea59f9e4539c2023-07-19T21:19:51Z2023-07-19T21:19:51Z2022-072023-07Rubiano-Labrador, C., Acevedo-Barrios, R., Lazaro, A.G., Bowie, L.W., Támara Acosta, A.K., Molina, B.M. Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes (2022) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2022-July, . DOI: 10.18687/LACCEI2022.1.1.713https://hdl.handle.net/20.500.12585/1220010.18687/LACCEI2022.1.1.713Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPseudomonas spp. is considered one of the most successful bacterial genera due to its plasticity and metabolic versatility, which has allowed it to colonize different ecosystems, including Antarctica. The ability of Pseudomonas to adapt an d survive in the hostile conditions of the Antarctic makes them a reservoir of enzymes that can be used in different biotechnological applications; however, research on this genus in Antarctica is still in its infancy. Therefore, the aim of this study was to isolate and characterise cold-adapted Pseudomonas from Livingston Island, Antarctica, and expl ore th eir abi l ity to produce cold-active hydrolytic enzymes. In the present study, we isolated seven cold-adapted bacteria related to the genus Pseudomonas. The isolated strains have the ability to produce hydrolytic enzymes. These results demonstrate that cold-adapted Pseudomonas from Antarctica are a promising source of cold-active enzymes with biotechnological potential.6 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of the LACCEI international Multi-conference for Engineering, Education and TechnologyPseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1AmylaseCelluloseExtracellular EnzymesPolar EnvironmentsProteaseCartagena de IndiasLalucat, J., Mulet, M., Gomila, M., García-Valdés, E. Genomics in bacterial taxonomy: Impact on the genus pseudomonas (2020) Genes, 11 (2), art. no. 139. Cited 106 times. https://www.mdpi.com/2073-4425/11/2/139/pdf doi: 10.3390/genes11020139Jun, S.-R., Wassenaar, T.M., Nookaew, I., Hauser, L., Wanchai, V., Land, M., Timm, C.M., (...), Ussery, D.W. Diversity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis (Open Access) (2016) Applied and Environmental Microbiology, 82 (1), pp. 375-383. Cited 55 times. http://aem.asm.org/content/82/1/375.full.pdf doi: 10.1128/AEM.02612-15Silby, M.W., Winstanley, C., Godfrey, S.A., Levy, S.B., Jackson, R.W. Pseudomonas genomes: Diverse and adaptable (Open Access) (2011) FEMS Microbiology Reviews, 35 (4), pp. 652-680. Cited 593 times. doi: 10.1111/j.1574-6976.2011.00269.xVazquez, S.C., Coria, S.H., Mac Cormack, W.P. Extracellular proteases from eight psychrotolerant antarctic strains (2004) Microbiological Research, 159 (2), pp. 157-166. Cited 44 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2004.03.001Lambrechts, S., Willems, A., Tahon, G. Uncovering the uncultivated majority in antarctic soils: Toward a synergistic approach (2019) Frontiers in Microbiology, 10 (FEB), art. no. 242. Cited 32 times. https://www.frontiersin.org/journals/microbiology# doi: 10.3389/fmicb.2019.00242Bruno, S., Coppola, D., Di Prisco, G., Giordano, D., Verde, C. Enzymes from marine polar regions and their biotechnological applications (Open Access) (2019) Marine Drugs, 17 (10), art. no. 544. Cited 60 times. https://www.mdpi.com/1660-3397/17/10/544/pdf doi: 10.3390/md17100544Lamilla, C., Pavez, M., Santos, A., Hermosilla, A., Llanquinao, V., Barrientos, L. Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica (Open Access) (2017) Polar Biology, 40 (3), pp. 719-726. Cited 34 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-016-1977-zMaiangwa, J., Ali, M.S.M., Salleh, A.B., Rahman, R.N.Z.R.A., Shariff, F.M., Leow, T.C. Adaptational properties and applications of cold-active lipases from psychrophilic bacteria (2015) Extremophiles, 19 (2), pp. 235-247. Cited 59 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-014-0710-5Vester, J.K., Glaring, M.A., Stougaard, P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments (Open Access) (2015) Extremophiles, 19 (1), pp. 17-29. Cited 59 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-014-0704-3Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.-C., Nasr, K.A., Johnson, T., (...), Zhou, S. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives (Open Access) (2019) Molecular Biotechnology, 61 (8), pp. 579-601. Cited 55 times. http://www.springer.com/humana+press/journal/12033 doi: 10.1007/s12033-019-00187-1Venkatachalam, S., Gowdaman, V., Prabagaran, S.R. Culturable and Culture-Independent Bacterial Diversity and the Prevalence of Cold-Adapted Enzymes from the Himalayan Mountain Ranges of India and Nepal (Open Access) (2015) Microbial Ecology, 69 (3), pp. 472-491. Cited 31 times. link.springer.de/link/service/journals/00248/index.htm doi: 10.1007/s00248-014-0476-4Rubiano-Labrador, C., Díaz-Cárdenas, C., López, G., Gómez, J., Baena, S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes (2019) Extremophiles, 23 (6), pp. 793-808. Cited 4 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-019-01132-5Selbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M., Onofri, S. Culturable bacteria associated with Antarctic lichens: Affiliation and psychrotolerance (2010) Polar Biology, 33 (1), pp. 71-83. Cited 75 times. doi: 10.1007/s00300-009-0686-2Menasria, T., Aguilera, M., Hocine, H., Benammar, L., Ayachi, A., Si Bachir, A., Dekak, A., (...), Monteoliva-Sánchez, M. Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes (2018) Microbiological Research, 207, pp. 289-298. Cited 47 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2017.12.011Yu, Y., Li, H.-R., Zeng, Y.-X., Chen, B. Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica (2011) Marine Drugs, 9 (2), pp. 184-195. Cited 28 times. http://www.mdpi.com/1660-3397/9/2/184/pdf doi: 10.3390/md9020184Danilovich, M.E., Sánchez, L.A., Acosta, F., Delgado, O.D. Antarctic bioprospecting: in pursuit of microorganisms producing new antimicrobials and enzymes (2018) Polar Biology, 41 (7), pp. 1417-1433. Cited 19 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-018-2295-4García-Echauri, S.A., Gidekel, M., Gutiérrez-Moraga, A., Santos, L., de León-Rodríguez, A. Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica (2011) Folia Microbiologica, 56 (3), pp. 209-214. Cited 22 times. doi: 10.1007/s12223-011-0038-9ropeano, M. T Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production (2012) Polar Res, 31 (1), p. 18507. Cited 19 times.Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., Antranikian, G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen (Open Access) (2004) Extremophiles, 8 (6), pp. 475-488. Cited 115 times. doi: 10.1007/s00792-004-0409-0Orellana-Saez, M., Pacheco, N., Costa, J.I., Mendez, K.N., Miossec, M.J., Meneses, C., Castro-Nallar, E., (...), Poblete-Castro, I. In-depth genomic and phenotypic characterization of the antarctic psychrotolerant strain pseudomonas sp. MPC6 reveals unique metabolic features, plasticity, and biotechnological potential (2019) Frontiers in Microbiology, 10, art. no. 1154. Cited 36 times. https://www.frontiersin.org/journals/microbiology# doi: 10.3389/fmicb.2019.01154Silva, T.R., Duarte, A.W.F., Passarini, M.R.Z., Ruiz, A.L.T.G., Franco, C.H., Moraes, C.B., de Melo, I.S., (...), Oliveira, V.M. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities (Open Access) (2018) Polar Biology, 41 (7), pp. 1505-1519. Cited 23 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-018-2300-yVásquez-Ponce, F., Higuera-Llantén, S., Pavlov, M.S., Marshall, S.H., Olivares-Pacheco, J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica (Open Access) (2018) Brazilian Journal of Microbiology, 49 (4), pp. 695-702. Cited 21 times. http://www.scielo.br doi: 10.1016/j.bjm.2018.02.005Romaniuk, K., Styczynski, M., Decewicz, P., Buraczewska, O., Uhrynowski, W., Fondi, M., Wolosiewicz, M., (...), Dziewit, L. Diversity and horizontal transfer of antarctic pseudomonas spp. plasmids (2019) Genes, 10 (11), art. no. 850. Cited 5 times. https://www.mdpi.com/2073-4425/10/11/850/pdf doi: 10.3390/genes10110850Papale, M., Rizzo, C., Villescusa, J.A., Rochera, C., Camacho, A., Michaud, L., Lo Giudice, A. Prokaryotic assemblages in the maritime Antarctic Lake Limnopolar (Byers Peninsula, South Shetland Islands) (2017) Extremophiles, 21 (6), pp. 947-961. Cited 9 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-017-0955-xGugliandolo, C., Michaud, L., Lo Giudice, A., Lentini, V., Rochera, C., Camacho, A., Maugeri, T.L. Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime Antarctica) (2016) Microbial Ecology, 71 (2), pp. 387-400. Cited 21 times. link.springer.de/link/service/journals/00248/index.htm doi: 10.1007/s00248-015-0666-8Dickinson, I., Goodall-Copestake, W., Thorne, M.A.S., Schlitt, T., Ávila-Jiménez, M.L., Pearce, D.A. Extremophiles in an antarctic marine ecosystem (2016) Microorganisms, 4 (1), art. no. 8. Cited 16 times. https://www.mdpi.com/2076-2607/4/1/8/pdf doi: 10.3390/microorganisms4010008Ciesielski, S., Górniak, D., Możejko, J., Świątecki, A., Grzesiak, J., Zdanowski, M. The Diversity of Bacteria Isolated from Antarctic Freshwater Reservoirs Possessing the Ability to Produce Polyhydroxyalkanoates (Open Access) (2014) Current Microbiology, 69 (5), pp. 594-603. Cited 27 times. link.springer.de/link/service/journals/00284/index.htm doi: 10.1007/s00284-014-0629-1Zhang, J.W., Zeng, R.Y. Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: Diversity and characterization of amylases (Open Access) (2007) World Journal of Microbiology and Biotechnology, 23 (11), pp. 1551-1557. Cited 22 times. doi: 10.1007/s11274-007-9400-0Koo, H., Basu, M.K., Crowley, M., Aislabie, J., Bej, A.K. Draft genome sequence of Pseudomonas sp. strain Ant30-3, a psychrotolerant bacterium with biodegradative attribute isolated from Antarctica (2014) Genome Announcements, 2 (3), art. no. e00522-14. Cited 2 times. http://genomea.asm.org/content/2/3/e00522-14.full.pdf doi: 10.1128/genomeA.00522-14Pacheco, N., Orellana-Saez, M., Pepczynska, M., Enrione, J., Bassas-Galia, M., Borrero-de Acuña, J.M., Zacconi, F.C., (...), Poblete-Castro, I. Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers (2019) Journal of Industrial Microbiology and Biotechnology, 46 (8), pp. 1139-1153. Cited 18 times. www.springerlink.com/app/home/journal.asp doi: 10.1007/s10295-019-02186-2Tapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., (...), Folch-Mallol, J.L. Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico (Open Access) (2020) Microbiological Research, 232, art. no. 126394. Cited 41 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2019.126394Reddy, G.S.N., Matsumoto, G.I., Schumann, P., Stackerbrandt, E., Shivaji, S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antartica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov (2004) International Journal of Systematic and Evolutionary Microbiology, 54 (3), pp. 713-719. Cited 104 times. doi: 10.1099/ijs.0.02827-0Formusa, P.A., Hsiang, T., Habash, M.B., Lee, H., Trevors, J.T. Genome sequence of Pseudomonas mandelii PD30 (Open Access) (2014) Genome Announcements, 2 (4), art. no. e00713-14. Cited 4 times. http://genomea.asm.org/content/2/4/e00713-14.full.pdf doi: 10.1128/genomeA.00713-14Jang, S.-H., Kim, J., Kim, J., Hong, S., Lee, C. Genome sequence of cold-adapted Pseudomonas mandelii Strain JR-1 (Open Access) (2012) Journal of Bacteriology, 194 (12), pp. 3263-3263. Cited 29 times. http://jb.asm.org/content/194/12/3263.full.pdf doi: 10.1128/JB.00517-12Loperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., Pellegrino, A., (...), Batista, S. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica (Open Access) (2012) World Journal of Microbiology and Biotechnology, 28 (5), pp. 2249-2256. Cited 77 times. doi: 10.1007/s11274-012-1032-3Cristóbal, H.A., Benito, J., Lovrich, G.A., Abate, C.M. Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel, Argentina (Open Access) (2015) Folia Microbiologica, 60 (3), pp. 183-198. Cited 11 times. www.biomed.cas.cz/mbu/folia/index.html doi: 10.1007/s12223-014-0351-1Bozal, N., Montes, M.J., Mercadé, E. Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment (Open Access) (2007) International Journal of Systematic and Evolutionary Microbiology, 57 (11), pp. 2609-2612. Cited 35 times. doi: 10.1099/ijs.0.65141-0Soares Jr., F.L., Melo, I.S., Dias, A.C.F., Andreote, F.D. Cellulolytic bacteria from soils in harsh environments (2012) World Journal of Microbiology and Biotechnology, 28 (5), pp. 2195-2203. Cited 61 times. doi: 10.1007/s11274-012-1025-2Singh, S., Bajaj, B.K. Potential application spectrum of microbial proteases for clean and green industrial production (Open Access) (2017) Energy, Ecology and Environment, 2 (6), pp. 370-386. Cited 48 times. https://link.springer.com/journal/40974 doi: 10.1007/s40974-017-0076-5Kuddus, M., Ramteke, P.W. Recent developments in production and biotechnological applications of cold-active microbial proteases (Open Access) (2012) Critical Reviews in Microbiology, 38 (4), pp. 330-338. Cited 66 times. doi: 10.3109/1040841X.2012.678477Gopinath, S.C.B., Anbu, P., Arshad, M.K.M., Lakshmipriya, T., Voon, C.H., Hashim, U., Chinni, S.V. Biotechnological Processes in Microbial Amylase Production (Open Access) (2017) BioMed Research International, 2017, art. no. 1272193. Cited 113 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2017/1272193Wu, J., Geng, A., Xie, R., Wang, H., Sun, J. Characterization of cold adapted and ethanol tolerant β-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol (2018) International Journal of Biological Macromolecules, 109, pp. 872-879. Cited 20 times. www.elsevier.com/locate/ijbiomac doi: 10.1016/j.ijbiomac.2017.11.072Rajendran, R., Pandi, A., Ramchary, A., Thiagarajan, H., Panneerselvam, J., Niraikulam, A., Kuppuswami, G.M., (...), Ramudu, K.N. Extracellular urease from Arthrobacter creatinolyticus MTCC 5604: scale up, purification and its cytotoxic effect thereof (Open Access) (2019) Molecular Biology Reports, 46 (1), pp. 133-141. Cited 7 times. doi: 10.1007/s11033-018-4453-8Wang, T., Wang, S., Tang, X., Fan, X., Yang, S., Yao, L., Li, Y., (...), Han, H. Isolation of urease-producing bacteria and their effects on reducing Cd and Pb accumulation in lettuce (Lactuca sativa L.) (Open Access) (2020) Environmental Science and Pollution Research, 27 (8), pp. 8707-8718. Cited 29 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-019-06957-3Stabnikov, V., Jian, C., Ivanov, V., Li, Y. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand (Open Access) (2013) World Journal of Microbiology and Biotechnology, 29 (8), pp. 1453-1460. Cited 85 times. www.wkap.nl/journalhome.htm/0959-3993 doi: 10.1007/s11274-013-1309-1Kasana, R.C., Gulati, A. Cellulases from psychrophilic microorganisms: A review (2011) Journal of Basic Microbiology, 51 (6), pp. 572-579. Cited 62 times. doi: 10.1002/jobm.201000385http://purl.org/coar/resource_type/c_6501ORIGINALPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdfPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdfapplication/pdf596812https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/1/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdfb3baa3cd98943ec9345f5449f285ebc8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.txtPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.txtExtracted texttext/plain35805https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/4/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.txtf80505c2cf51d093e1376e078e2c278dMD54THUMBNAILPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.jpgPseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.jpgGenerated Thumbnailimage/jpeg10182https://repositorio.utb.edu.co/bitstream/20.500.12585/12200/5/Pseudomonas-strains-from-the-Livingston-Island-Antarctica-a-source-of-coldactive-hydrolytic-enzymesProceedings-of-the-LACCEI-international-Multiconference-for-Engineering-Education-and-Technology.pdf.jpg27fbc297692879f59ab7d61a6ef00935MD5520.500.12585/12200oai:repositorio.utb.edu.co:20.500.12585/122002023-07-20 00:18:16.257Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=