Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations

The main problem in the operation of micro-grids is controlling the voltage and frequency. The inertia of the whole grid is low, so the operation of the system is interrupted by sudden changes in load or incidence in the absence of a proper control system. In order to solve this issue, various contr...

Full description

Autores:
Akbari, Ehsan
Shafaghatian, Nima
Zishan, Farhad
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12410
Acceso en línea:
https://hdl.handle.net/20.500.12585/12410
Palabra clave:
Distributed control
Honey badger algorithm
Microgrids
Optimization
Two-level control
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d1e137b8dae7ee6080c39cadbc6e3ad8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12410
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
title Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
spellingShingle Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
Distributed control
Honey badger algorithm
Microgrids
Optimization
Two-level control
title_short Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
title_full Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
title_fullStr Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
title_full_unstemmed Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
title_sort Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations
dc.creator.fl_str_mv Akbari, Ehsan
Shafaghatian, Nima
Zishan, Farhad
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
dc.contributor.author.none.fl_str_mv Akbari, Ehsan
Shafaghatian, Nima
Zishan, Farhad
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
dc.subject.keywords.spa.fl_str_mv Distributed control
Honey badger algorithm
Microgrids
Optimization
Two-level control
topic Distributed control
Honey badger algorithm
Microgrids
Optimization
Two-level control
description The main problem in the operation of micro-grids is controlling the voltage and frequency. The inertia of the whole grid is low, so the operation of the system is interrupted by sudden changes in load or incidence in the absence of a proper control system. In order to solve this issue, various control structures have been proposed. In this paper, an optimal distributed control strategy for coordinating multiple distributed generation instances is presented in an islanded microgrid. A secondary frequency control method is implemented in order to eliminate voltage deviation and reduce the small signal error. In this layer, an optimized PID controller is used. PID controller optimization is carried out via the Honey Badger Algorithm, and results are obtained using the MATLAB software. According to the results, inadequate adjustment of a secondary loop leads to poor and unacceptable outcomes, and the necessary power quality is not achieved. However, by using the proposed method, a proper performance of the microgrid in the face of disturbances is achieved.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09
dc.date.accessioned.none.fl_str_mv 2023-07-24T18:53:09Z
dc.date.available.none.fl_str_mv 2023-07-24T18:53:09Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv E. Akbari, N. Shafaghatian, F. Zishan, O. D. Montoya and D. A. Giral-Ramírez, "Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations," in IEEE Access, vol. 10, pp. 95824-95838, 2022, doi:10.1109/ACCESS.2022.3203730.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12410
dc.identifier.doi.none.fl_str_mv 10.1109/ACCESS.2022.3203730
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv E. Akbari, N. Shafaghatian, F. Zishan, O. D. Montoya and D. A. Giral-Ramírez, "Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations," in IEEE Access, vol. 10, pp. 95824-95838, 2022, doi:10.1109/ACCESS.2022.3203730.
10.1109/ACCESS.2022.3203730
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12410
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE Access - Vol. 10 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/1/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/5/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/4/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdf.jpg
bitstream.checksum.fl_str_mv b206625caf5e3d3cb8f2011ce5f13c00
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f6c2d64fb58a4c19a4b800cfdebb85ea
94ddb99d14bc2e5200c910358185d7c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021789957750784
spelling Akbari, Ehsan273dc699-e32a-43d4-ae2f-e6bced4eeaffShafaghatian, Nima66c0b4c4-90e3-4a22-a983-12c6d93f15ebZishan, Farhad041e882b-354f-48b5-87bc-d4748b261f08Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f52023-07-24T18:53:09Z2023-07-24T18:53:09Z2022-092023-07E. Akbari, N. Shafaghatian, F. Zishan, O. D. Montoya and D. A. Giral-Ramírez, "Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations," in IEEE Access, vol. 10, pp. 95824-95838, 2022, doi:10.1109/ACCESS.2022.3203730.https://hdl.handle.net/20.500.12585/1241010.1109/ACCESS.2022.3203730Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe main problem in the operation of micro-grids is controlling the voltage and frequency. The inertia of the whole grid is low, so the operation of the system is interrupted by sudden changes in load or incidence in the absence of a proper control system. In order to solve this issue, various control structures have been proposed. In this paper, an optimal distributed control strategy for coordinating multiple distributed generation instances is presented in an islanded microgrid. A secondary frequency control method is implemented in order to eliminate voltage deviation and reduce the small signal error. In this layer, an optimized PID controller is used. PID controller optimization is carried out via the Honey Badger Algorithm, and results are obtained using the MATLAB software. According to the results, inadequate adjustment of a secondary loop leads to poor and unacceptable outcomes, and the necessary power quality is not achieved. However, by using the proposed method, a proper performance of the microgrid in the face of disturbances is achieved.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE Access - Vol. 10 (2022)Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Distributed controlHoney badger algorithmMicrogridsOptimizationTwo-level controlCartagena de IndiasSadeghi, B., Shafaghatian, N., Alayi, R., El Haj Assad, M., Zishan, F., Hosseinzadeh, H. Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm (2022) Clean Energy, 6 (1), pp. 869-882. Cited 8 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab062Shafaghatian, N., Kiani, A., Taheri, N., Rahimkhani, Z., Masoumi, S.S. Damping controller design based on FO-PID-EMA in VSC HVDC system to improve stability of hybrid power system (2020) Journal of Central South University, 27 (2), pp. 403-417. Cited 5 times. http://www.springerlink.com/content/2095-2899/ doi: 10.1007/s11771-020-4305-2Almas Prakasa, M., Subiyanto, S. Optimal cost and feasible design for grid-connected microgrid on campus area using the robust-intelligence method (2022) Clean Energy, 6 (1), pp. 823-840. Cited 4 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab046Mutarraf, M.U., Terriche, Y., Nasir, M., Guan, Y., Su, C.-L., Vasquez, J.C., Guerrero, J.M. A Communication-Less Multimode Control Approach for Adaptive Power Sharing in Ship-Based Seaport Microgrid (2021) IEEE Transactions on Transportation Electrification, 7 (4), pp. 3070-3082. Cited 23 times. https://www.ieee.org/membership-catalog/productdetail/showProductDetailPage.html?product=PER473-ELE&utm_source=Mainsite_CSE&utm_medium=CSE_Promotion&utm_campaign=Catalog_Promotion-PER473 doi: 10.1109/TTE.2021.3087722Vorobev, P., Huang, P.-H., Hosani, M.A., Kirtley, J.L., Turitsyn, K. Plug- and-play compliant control for inverter-based microgrids (2020) Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), p. 1. JanZhang, D., Ambikairajah, E. De-coupled PQ control for operation of islanded microgrid (Open Access) (2015) 2015 Australasian Universities Power Engineering Conference: Challenges for Future Grids, AUPEC 2015, art. no. 7324820. Cited 7 times. ISBN: 978-147998725-2 doi: 10.1109/AUPEC.2015.7324820Chishti, F., Murshid, S., Singh, B. Robust Normalized Mixed-Norm Adaptive Control Scheme for PQ Improvement at PCC of a Remotely Located Wind-Solar PV-BES Microgrid (2020) IEEE Transactions on Industrial Informatics, 16 (3), art. no. 8741037, pp. 1708-1721. Cited 26 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2019.2923641Caldognetto, T., Tenti, P. Microgrids operation based on master-slave cooperative control (2014) IEEE Journal of Emerging and Selected Topics in Power Electronics, 2 (4), art. no. 6868993, pp. 1081-1088. Cited 117 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2014.2345052Sivaranjani, S., Agarwal, E., Gupta, V., Antsaklis, P., Xie, L. Distributed mixed voltage angle and frequency droop control of microgrid interconnections with loss of distribution-PMU measurements (2021) IEEE Open Access Journal of Power and Energy, 8, art. no. 9309247, pp. 45-56. Cited 13 times. https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=8784343 doi: 10.1109/OAJPE.2020.3047639Braitor, A.-C., Konstantopoulos, G.C., Kadirkamanathan, V. Current-Limiting Droop Control Design and Stability Analysis for Paralleled Boost Converters in DC Microgrids (Open Access) (2021) IEEE Transactions on Control Systems Technology, 29 (1), art. no. 8949467, pp. 385-394. Cited 31 times. https://ieeexplore.ieee.org/servlet/opac?punumber=87 doi: 10.1109/TCST.2019.2951092Liu, B., Wu, T., Liu, Z., Liu, J. A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids (2020) IEEE Transactions on Power Electronics, 35 (11), art. no. 9050833, pp. 11634-11651. Cited 46 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2020.2983878Ling, Y., Li, Y., Yang, Z., Xiang, J. A Dispatchable Droop Control Method for Distributed Generators in Islanded AC Microgrids (2021) IEEE Transactions on Industrial Electronics, 68 (9), art. no. 9161413, pp. 8356-8366. Cited 10 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2020.3013547Choi, D., Park, J.-W., Lee, S.H. Virtual Multi-Slack Droop Control of Stand-Alone Microgrid With High Renewable Penetration Based on Power Sensitivity Analysis (2018) IEEE Transactions on Power Systems, 33 (3), pp. 3408-3417. Cited 21 times. doi: 10.1109/TPWRS.2018.2810443Wang, Z., Qiu, S., Song, R., Wang, X., Zhu, B., Li, B. Research on PID parameter tuning of coordinated control for ultra-supercritical units based on Ziegler Nichols method (2019) Proceedings of 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2019, art. no. 8984069, pp. 1155-1158. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8966969 ISBN: 978-172810513-0 doi: 10.1109/IMCEC46724.2019.8984069Sayed, M.M., Saad, M.S., Emara, H.M., Abou El-Zahab, E.E. A novel method for tuning the PID parameters based on the modified biogeography-based optimization for hydraulic servo control system (2012) IET Conference Publications, 2012 (592 CP), p. P227. Cited 3 times. ISBN: 978-184919616-1 doi: 10.1049/cp.2012.0171Alghamdi, B., Cañizares, C.A. Frequency Regulation in Isolated Microgrids through Optimal Droop Gain and Voltage Control (2021) IEEE Transactions on Smart Grid, 12 (2), art. no. 9211793, pp. 988-998. Cited 40 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3028472Mahmud, R., Hossain, M.A., Pota, H. Nonlinear Output Feedback Droop Control for Parallel Inverters in Standalone Microgrids (Open Access) (2019) 2019 9th International Conference on Power and Energy Systems, ICPES 2019, art. no. 9105385. Cited 5 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9098828 ISBN: 978-172812658-6 doi: 10.1109/ICPES47639.2019.9105385Patarroyo-Montenegro, J.F., Andrade, F., Guerrero, J.M., Vasquez, J.C. A Linear Quadratic Regulator with Optimal Reference Tracking for Three-Phase Inverter-Based Islanded Microgrids (2021) IEEE Transactions on Power Electronics, 36 (6), art. no. 9250669, pp. 7112-7122. Cited 28 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2020.3036594Alayi, R., Zishan, F., Mohkam, M., Hoseinzadeh, S., Memon, S., Garcia, D.A. A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system (Open Access) (2021) Electronics (Switzerland), 10 (15), art. no. 1826. Cited 21 times. https://www.mdpi.com/2079-9292/10/15/1826/pdf doi: 10.3390/electronics10151826Dong, X., Li, X., Cheng, S. Energy management optimization of microgrid cluster based on multi-agent-system and hierarchical stackelberg game theory (2020) IEEE Access, 8, pp. 206183-206197. Cited 43 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3037676Xu, Y., Sun, H., Gu, W., Xu, Y., Li, Z. Optimal Distributed Control for Secondary Frequency and Voltage Regulation in an Islanded Microgrid (Open Access) (2019) IEEE Transactions on Industrial Informatics, 15 (1), art. no. 8264802, pp. 225-235. Cited 132 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2018.2795584Ross, M., Abbey, C., Bouffard, F., Joós, G. Multiobjective optimization dispatch for microgrids with a high penetration of renewable generation (Open Access) (2015) IEEE Transactions on Sustainable Energy, 6 (4), art. no. 7122352, pp. 1306-1314. Cited 114 times. doi: 10.1109/TSTE.2015.2428676Yuan, W., Wang, Y., Chen, Z. New perspectives on power control of AC microgrid considering operation cost and efficiency (2021) IEEE Transactions on Power Systems, 36 (5), art. no. 9430723, pp. 4844-4847. Cited 10 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2021.3080141Alayi, R., Zishan, F., Seyednouri, S.R., Kumar, R., Ahmadi, M.H., Sharifpur, M. Optimal load frequency control of island microgrids via a pid controller in the presence of wind turbine and pv (2021) Sustainability (Switzerland), 13 (19), art. no. 10728. Cited 38 times. https://www.mdpi.com/2071-1050/13/19/10728/pdf doi: 10.3390/su131910728Ou, L., Tang, Y., Gu, D., Zhang, W. Stability analysis of PID controllers for integral processes with time delay (Open Access) (2005) Proceedings of the American Control Conference, 6, art. no. FrB08.6, pp. 4247-4252. Cited 21 times.Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems (Open Access) (2022) Mathematics and Computers in Simulation, 192, pp. 84-110. Cited 276 times. https://www.journals.elsevier.com/mathematics-and-computers-in-simulation doi: 10.1016/j.matcom.2021.08.013Hayyolalam, V., Pourhaji Kazem, A.A. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems (Open Access) (2020) Engineering Applications of Artificial Intelligence, 87, art. no. 103249. Cited 378 times. https://www.journals.elsevier.com/engineering-applications-of-artificial-intelligence doi: 10.1016/j.engappai.2019.103249http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdfOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdfapplication/pdf153595https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/1/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdfb206625caf5e3d3cb8f2011ce5f13c00MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdf.txtOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdf.txtExtracted texttext/plain8634https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/5/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdf.txtf6c2d64fb58a4c19a4b800cfdebb85eaMD55THUMBNAILOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdf.jpgOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations.pdf.jpgGenerated Thumbnailimage/jpeg8504https://repositorio.utb.edu.co/bitstream/20.500.12585/12410/4/Optimized%20Two-Level%20Control%20of%20Islanded%20Microgrids%20to%20Reduce%20Fluctuations.pdf.jpg94ddb99d14bc2e5200c910358185d7c6MD5420.500.12585/12410oai:repositorio.utb.edu.co:20.500.12585/124102023-07-26 00:17:37.66Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=