Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems

In this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps.

Autores:
Rodrigues, Fagner B.
Muentes Acevedo, Jeovanny
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10338
Acceso en línea:
https://hdl.handle.net/20.500.12585/10338
https://doi.org/10.1007/s10883-021-09541-6
Palabra clave:
Non-autonomous dynamical systems
Mean dimension
Metric mean dimension
Topological entropy
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d1d342286e97486b849e6ae5a7eba420
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10338
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
title Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
spellingShingle Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
Non-autonomous dynamical systems
Mean dimension
Metric mean dimension
Topological entropy
title_short Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
title_full Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
title_fullStr Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
title_full_unstemmed Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
title_sort Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
dc.creator.fl_str_mv Rodrigues, Fagner B.
Muentes Acevedo, Jeovanny
dc.contributor.author.none.fl_str_mv Rodrigues, Fagner B.
Muentes Acevedo, Jeovanny
dc.subject.keywords.spa.fl_str_mv Non-autonomous dynamical systems
Mean dimension
Metric mean dimension
Topological entropy
topic Non-autonomous dynamical systems
Mean dimension
Metric mean dimension
Topological entropy
description In this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-07
dc.date.accessioned.none.fl_str_mv 2021-07-29T19:26:35Z
dc.date.available.none.fl_str_mv 2021-07-29T19:26:35Z
dc.date.submitted.none.fl_str_mv 2021-07-29
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Rodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10338
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10883-021-09541-6
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10338
https://doi.org/10.1007/s10883-021-09541-6
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.format.size.none.fl_str_mv 27 páginas
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Springer Science+Business Media, LLC, part of Springer Nature 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/1/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/4/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/5/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdf.jpg
bitstream.checksum.fl_str_mv ad56a881ccab5baa1c08c9848a27adc3
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
be0ae1f39fa0306dc942fbb7bf4cf793
eff10b14cdea391784db1ab5fbf489d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021758694457344
spelling Rodrigues, Fagner B.2bbd33e0-29cb-4a32-beef-a9715e693e83Muentes Acevedo, Jeovannya00a2fcf-ed20-430d-a46b-2195dd9675d52021-07-29T19:26:35Z2021-07-29T19:26:35Z2020-10-072021-07-29Rodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6https://hdl.handle.net/20.500.12585/10338https://doi.org/10.1007/s10883-021-09541-6Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps.application/pdf27 páginasenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Springer Science+Business Media, LLC, part of Springer Nature 2021Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Non-autonomous dynamical systemsMean dimensionMetric mean dimensionTopological entropyCartagena de IndiasInvestigadoresFreitas AC, Freitas JM, Vaienti S. Extreme value laws for non stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, probabilités et statistiques; 2017. Institut Henri Poincaré.Gromov M. Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math Phys Anal Geom 1999;2(4):323–415.Gutman Y, Tsukamoto M. 2015. Embedding minimal dynamical systems into Hilbert cubes. arXiv:1511.01802.Katok A, Hasselblatt B, Vol. 54. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press; 1995.Kawabata T, Dembo A. The rate-distortion dimension of sets and measures. IEEE Trans Inf Theory 1994;40(5):1564–72.Kloeckner B. Optimal transport and dynamics of expanding circle maps acting on measures. Ergodic Theory Dyn Syst 2013;33(2):529–48.Kolyada S, Snoha L. Topological entropy of nonautonomous dynamical systems. Random Comput Dyn 1996;4(2):205.Li H. Sofic mean dimension. Adv Math 2013;244:570–604.Lindenstrauss E. Mean dimension, small entropy factors and an embedding theorem. Publ Math Inst des Hautes Études Scientifiques 1999;89(1):227–262Lindenstrauss E, Weiss B. Mean topological dimension. Israel J Math 2000;115(1):1–24.Lindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans Inf Theory 2018;64(5):3590–609.Lindenstrauss E, Tsukamoto M. Mean dimension and an embedding problem: an example. Israel J Math 2014;199(5–2):573–84.Misiurewicz M. Horseshoes for continuous mappings of an interval. Dynamical systems. Berlin: Springer; 2010. p. 125–35.Muentes J. On the continuity of the topological entropy of non-autonomous dynamical systems. Bull Braz Math Soc New Ser 2018;49(1):89–106.Stadlbauer M. Coupling methods for random topological Markov chains. Ergodic Theory Dyn Syst 2017;37(3):971–94.Velozo A, Velozo R. 2017. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762.Yano K. A remark on the topological entropy of homeomorphisms. Invent Math 1980;59(3):215–220.Zhu Y, et al. Entropy of nonautonomous dynamical systems. J Korean Math Soc 2012;49(1):165–185.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALFagner and Jeovanny_Jeovanny De Jesus Mu.pdfFagner and Jeovanny_Jeovanny De Jesus Mu.pdfapplication/pdf909261https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/1/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdfad56a881ccab5baa1c08c9848a27adc3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTFagner and Jeovanny_Jeovanny De Jesus Mu.pdf.txtFagner and Jeovanny_Jeovanny De Jesus Mu.pdf.txtExtracted texttext/plain65079https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/4/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdf.txtbe0ae1f39fa0306dc942fbb7bf4cf793MD54THUMBNAILFagner and Jeovanny_Jeovanny De Jesus Mu.pdf.jpgFagner and Jeovanny_Jeovanny De Jesus Mu.pdf.jpgGenerated Thumbnailimage/jpeg50486https://repositorio.utb.edu.co/bitstream/20.500.12585/10338/5/Fagner%20and%20Jeovanny_Jeovanny%20De%20Jesus%20Mu.pdf.jpgeff10b14cdea391784db1ab5fbf489d3MD5520.500.12585/10338oai:repositorio.utb.edu.co:20.500.12585/103382021-07-30 02:00:06.443Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=