A machine learning approach for banks classification and forecast
n this research, a classification model is developed for the banking sector using the machine earning technique GLMNET. In the first place, a clustering process was developed, where 3 clearly differentiated groups were found. Subsequently, a Fuzzy analysis was performed finding the probabilities of...
- Autores:
-
Fontalvo Herrera, Tomas
De La Hoz Dominguez, Enrique
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12096
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12096
- Palabra clave:
- Customer Churn;
Sales;
Customer Relationship Management
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d11ce1e3af0b93f31319a3924cfd54d3 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12096 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A machine learning approach for banks classification and forecast |
title |
A machine learning approach for banks classification and forecast |
spellingShingle |
A machine learning approach for banks classification and forecast Customer Churn; Sales; Customer Relationship Management LEMB |
title_short |
A machine learning approach for banks classification and forecast |
title_full |
A machine learning approach for banks classification and forecast |
title_fullStr |
A machine learning approach for banks classification and forecast |
title_full_unstemmed |
A machine learning approach for banks classification and forecast |
title_sort |
A machine learning approach for banks classification and forecast |
dc.creator.fl_str_mv |
Fontalvo Herrera, Tomas De La Hoz Dominguez, Enrique |
dc.contributor.author.none.fl_str_mv |
Fontalvo Herrera, Tomas De La Hoz Dominguez, Enrique |
dc.subject.keywords.spa.fl_str_mv |
Customer Churn; Sales; Customer Relationship Management |
topic |
Customer Churn; Sales; Customer Relationship Management LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
n this research, a classification model is developed for the banking sector using the machine earning technique GLMNET. In the first place, a clustering process was developed, where 3 clearly differentiated groups were found. Subsequently, a Fuzzy analysis was performed finding the probabilities of transition of the banks to each group found, finally, the GLMNET algorithm was implemented, the automatic classification of the banks according to their financial items, obtaining a result of 95% accuracy. © 2019 International Business Information Management Association (IBIMA). |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-04 |
dc.date.accessioned.none.fl_str_mv |
2023-07-14T13:47:54Z |
dc.date.available.none.fl_str_mv |
2023-07-14T13:47:54Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12096 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12096 |
identifier_str_mv |
Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/1/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/5/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/4/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a651ec0964c104a5d3b93668f3a9523 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 d784fa8b6d98d27699781bd9a7cf19f0 2a735bb73ae2607a1f63b7a42240a99f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021766139346944 |
spelling |
Fontalvo Herrera, Tomaseb7fcb9d-ad94-4c1c-a9c5-d8d3fc30bee2De La Hoz Dominguez, Enriquead200026-a42f-466a-ac7a-31f67a4303c32023-07-14T13:47:54Z2023-07-14T13:47:54Z2019-042023-07https://hdl.handle.net/20.500.12585/12096Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de Bolívarn this research, a classification model is developed for the banking sector using the machine earning technique GLMNET. In the first place, a clustering process was developed, where 3 clearly differentiated groups were found. Subsequently, a Fuzzy analysis was performed finding the probabilities of transition of the banks to each group found, finally, the GLMNET algorithm was implemented, the automatic classification of the banks according to their financial items, obtaining a result of 95% accuracy. © 2019 International Business Information Management Association (IBIMA).10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020A machine learning approach for banks classification and forecastinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Customer Churn;Sales;Customer Relationship ManagementLEMBCartagena de IndiasAcuna, E., Rodriguez, C. The treatment of missing values and its effect on classifier accuracy (2004) Classification, Clustering, and Data Mining Applications, pp. 639-647. Cited 404 times. Springer, Berlin, HeidelbergAmores-Salvadó, J., Martin-de Castro, G., Navas-López, J.E. The importance of the complementarity between environmental management systems and environmental innovation capabilities: A firm level approach to environmental and business performance benefits (2015) Technological Forecasting and Social Change, 96, pp. 288-297. Cited 84 times. www.elsevier.com/inca/publications/store/5/0/5/7/4/0/ doi: 10.1016/j.techfore.2015.04.004Büyüközkan, G., Kayakutlu, G., Karakadilar, I.S. Assessment of lean manufacturing effect on business performance using Bayesian Belief Networks (2015) Expert Systems with Applications, 42 (19), pp. 6539-6551. Cited 62 times. doi: 10.1016/j.eswa.2015.04.016Castillo, P.A., Mora, A.M., Faris, H., Merelo, J.J., García-Sánchez, P., Fernández-Ares, A.J., De las Cuevas, P., (...), García-Arenas, M.I. Applying computational intelligence methods for predicting the sales of newly published books in a real editorial business management environment (2017) Knowledge-Based Systems, 115, pp. 133-151. Cited 27 times. doi: 10.1016/j.knosys.2016.10.019Cavalcante, R.C., Brasileiro, R.C., Souza, V.L.F., Nobrega, J.P., Oliveira, A.L.I. Computational Intelligence and Financial Markets: A Survey and Future Directions (2016) Expert Systems with Applications, 55, pp. 194-211. Cited 355 times. doi: 10.1016/j.eswa.2016.02.006Chen, M.-S., Han, J., Yu, P.S. Data mining: An overview from a database perspective (1996) IEEE Transactions on Knowledge and Data Engineering, 8 (6), pp. 866-883. Cited 1560 times. doi: 10.1109/69.553155Dietterich, T.G. Ensemble methods in machine learning (2000) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1857 LNCS, pp. 1-15. Cited 4615 times. https://www.springer.com/series/558 ISBN: 3540677046; 978-354067704-8 doi: 10.1007/3-540-45014-9_1Dutta, A., Bandopadhyay, G., Sengupta, S. Prediction of stock performance in indian stock market using logistic regression (2015) International Journal of Business and Information, 7 (1). Cited 48 times.Friedman, J., Hastie, T., Tibshirani, R. Regularization paths for generalized linear models via coordinate descent (2010) Journal of Statistical Software, 33 (1), pp. 1-22. Cited 9422 times. http://www.jstatsoft.org/v33/i01/paper doi: 10.18637/jss.v033.i01Hans, C. Bayesian lasso regression (Open Access) (2009) Biometrika, 96 (4), pp. 835-845. Cited 274 times. doi: 10.1093/biomet/asp047Hoerl, A.E., Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems (1970) Technometrics, 12 (1), pp. 55-67. Cited 6972 times. doi: 10.1080/00401706.1970.10488634Ince, H., Trafalis, T.B. Short term forecasting with support vector machines and application to stock price prediction (2008) International Journal of General Systems, 37 (6), pp. 677-687. Cited 64 times. www.tandf.co.uk/journals/titles/03081079.asp doi: 10.1080/03081070601068595Karnizova, L., Li, J.C. Economic policy uncertainty, financial markets and probability of US recessions (2014) Economics Letters, 125 (2), pp. 261-265. Cited 153 times. http://www.elsevier.com/homepage/sae/econbase/ecolet/ doi: 10.1016/j.econlet.2014.09.018Kaufman, L., Rousseeuw, P.J. Partitioning around medoids (program pam) (1990) Finding Groups in Data: An Introduction to Cluster Analysis, pp. 68-125. Cited 430 times.Kauko, K., Palmroos, P. The Delphi method in forecasting financial markets-An experimental study (2014) International Journal of Forecasting, 30 (2), pp. 313-327. Cited 62 times. doi: 10.1016/j.ijforecast.2013.09.007Kim, G., Bae, J. A novel approach to forecast promising technology through patent analysis (2017) Technological Forecasting and Social Change, 117, pp. 228-237. Cited 115 times. www.elsevier.com/inca/publications/store/5/0/5/7/4/0/ doi: 10.1016/j.techfore.2016.11.023Lam, S.K., Sleep, S., Hennig-Thurau, T., Sridhar, S., Saboo, A.R. Leveraging Frontline Employees’ Small Data and Firm-Level Big Data in Frontline Management: An Absorptive Capacity Perspective (2017) Journal of Service Research, 20 (1), pp. 12-28. Cited 60 times. http://www.sagepub.co.uk/journal.aspx?pid=105683 doi: 10.1177/1094670516679271Li, X., Pan, B., Law, R., Huang, X. Forecasting tourism demand with composite search index (Open Access) (2017) Tourism Management, 59, pp. 57-66. Cited 233 times. www.elsevier.com/inca/publications/store/3/0/4/7/2/ doi: 10.1016/j.tourman.2016.07.005MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations, 1, pp. 281-297. Cited 19800 times. Oakland, CA, USAMcCullagh, P. Generalized linear models (Open Access) (1984) European Journal of Operational Research, 16 (3), pp. 285-292. Cited 296 times. doi: 10.1016/0377-2217(84)90282-0Micallef, L., Sundin, I., Marttinen, P., Ammad-Ud-din, M., Peltola, T., Soare, M., Jacucci, G., (...), Kaski, S. Interactive elicitation of knowledge on feature relevance improves predictions in small data sets (2017) International Conference on Intelligent User Interfaces, Proceedings IUI, pp. 547-552. Cited 18 times. ISBN: 978-145034348-0 doi: 10.1145/3025171.3025181Puri, J., Yadav, S.P. Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India (2015) Expert Systems with Applications, 42 (11), pp. 4982-4998. Cited 55 times. doi: 10.1016/j.eswa.2015.02.014Ramirez, A., Lopez, I., Villuendas, Y., Yanez, C. Evolutive improvement of parameters in an associative classifier (2015) IEEE Latin America Transactions, 13 (5), art. no. 7112014, pp. 1550-1555. Cited 14 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2015.7112014Steyerberg, E.W., Eijkemans, M.J.C., Harrell Jr., F.E., Habbema, J.D.F. Prognostic modeling with logistic regression analysis: In search of a sensible strategy in small data sets (Open Access) (2001) Medical Decision Making, 21 (1), pp. 45-56. Cited 421 times. http://mdm.sagepub.com/content/by/year doi: 10.1177/0272989X0102100106Schneider, M.J., Gupta, S. Forecasting sales of new and existing products using consumer reviews: A random projections approach (2016) International Journal of Forecasting, 32 (2), pp. 243-256. Cited 62 times. http://www.elsevier.com/locate/ijforecast doi: 10.1016/j.ijforecast.2015.08.005Suominen, A., Toivanen, H., Seppänen, M. Firms' knowledge profiles: Mapping patent data with unsupervised learning (2017) Technological Forecasting and Social Change, 115, pp. 131-142. Cited 67 times. www.elsevier.com/inca/publications/store/5/0/5/7/4/0/ doi: 10.1016/j.techfore.2016.09.028Thoma, G. Composite value index of patent indicators: Factor analysis combining bibliographic and survey datasets (Open Access) (2014) World Patent Information, 38, pp. 19-26. Cited 34 times. http://www.elsevier.com/locate/issn/01722190 doi: 10.1016/j.wpi.2014.05.005Tkáč, M., Verner, R. Artificial neural networks in business: Two decades of research (Open Access) (2016) Applied Soft Computing Journal, 38, pp. 788-804. Cited 226 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.09.040Ward, J.H. Hierarchical Grouping to Optimize an Objective Function (Open Access) (1963) Journal of the American Statistical Association, 58 (301), pp. 236-244. Cited 13727 times. doi: 10.1080/01621459.1963.10500845Zou, H., Hastie, T. Regularization and variable selection via the elastic net (2005) Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67 (2), pp. 301-320. Cited 10640 times. doi: 10.1111/j.1467-9868.2005.00503.xhttp://purl.org/coar/resource_type/c_6501ORIGINALA machine learning approach for banks classification and forecast.pdfA machine learning approach for banks classification and forecast.pdfapplication/pdf149545https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/1/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf5a651ec0964c104a5d3b93668f3a9523MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTA machine learning approach for banks classification and forecast.pdf.txtA machine learning approach for banks classification and forecast.pdf.txtExtracted texttext/plain2https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/5/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf.txtd784fa8b6d98d27699781bd9a7cf19f0MD55THUMBNAILA machine learning approach for banks classification and forecast.pdf.jpgA machine learning approach for banks classification and forecast.pdf.jpgGenerated Thumbnailimage/jpeg3429https://repositorio.utb.edu.co/bitstream/20.500.12585/12096/4/A%20machine%20learning%20approach%20for%20banks%20classification%20and%20forecast.pdf.jpg2a735bb73ae2607a1f63b7a42240a99fMD5420.500.12585/12096oai:repositorio.utb.edu.co:20.500.12585/120962023-07-16 00:17:19.786Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |