Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model
The problem of the optimal load redistribution in electrical three-phase medium-voltage grids is addressed in this research from the point of view of mixed-integer convex optimization. The mathematical formulation of the load redistribution problem is developed in terminals of the distribution node...
- Autores:
-
Montoya, Oscar Danilo
Arias-Londoño, Andres
Grisales-Noreña, Luis Fernando
Barrios, José Ángel
Chamorro, Harold R.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10406
- Palabra clave:
- Conductor selection
Mathematical optimization
Distribution systems
Three-phase
Power flow
Energy losses
Vortex search algorithm
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d0e16e09f6127d21a8de771f43532490 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10406 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
title |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
spellingShingle |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model Conductor selection Mathematical optimization Distribution systems Three-phase Power flow Energy losses Vortex search algorithm LEMB |
title_short |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
title_full |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
title_fullStr |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
title_full_unstemmed |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
title_sort |
Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Arias-Londoño, Andres Grisales-Noreña, Luis Fernando Barrios, José Ángel Chamorro, Harold R. |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Arias-Londoño, Andres Grisales-Noreña, Luis Fernando Barrios, José Ángel Chamorro, Harold R. |
dc.subject.keywords.spa.fl_str_mv |
Conductor selection Mathematical optimization Distribution systems Three-phase Power flow Energy losses Vortex search algorithm |
topic |
Conductor selection Mathematical optimization Distribution systems Three-phase Power flow Energy losses Vortex search algorithm LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The problem of the optimal load redistribution in electrical three-phase medium-voltage grids is addressed in this research from the point of view of mixed-integer convex optimization. The mathematical formulation of the load redistribution problem is developed in terminals of the distribution node by accumulating all active and reactive power loads per phase. These loads are used to propose an objective function in terms of minimization of the average unbalanced (asymmetry) grade of the network with respect to the ideal mean consumption per-phase. The objective function is defined as the l1 -norm which is a convex function. As the constraints consider the binary nature of the decision variable, each node is conformed by a 3 × 3 matrix where each row and column have to sum 1, and two equations associated with the load redistribution at each phase for each of the network nodes. Numerical results demonstrate the efficiency of the proposed mixed-integer convex model to equilibrate the power consumption per phase in regards with the ideal value in three different test feeders, which are composed of 4, 15, and 37 buses, respectively. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-06-24 |
dc.date.accessioned.none.fl_str_mv |
2022-01-26T14:18:46Z |
dc.date.available.none.fl_str_mv |
2022-01-26T14:18:46Z |
dc.date.submitted.none.fl_str_mv |
2022-01-24 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124. https://doi.org/10.3390/sym13071124 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10406 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/sym13071124 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124. https://doi.org/10.3390/sym13071124 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10406 https://doi.org/10.3390/sym13071124 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Computation - vol. 9 n° 7 2021 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/4/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/5/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/6/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/7/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/8/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdf.jpg |
bitstream.checksum.fl_str_mv |
d32e40d8c47405d73b19c6847016a828 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 02d14903c9fce16de18d2a29266e0da3 e995fea2bc6cfd448c5e690e694ec1e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021778962382848 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Arias-Londoño, Andresb78c3735-f81d-45a4-ab64-b27983ba9667Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Barrios, José Ángel9279b48d-37a4-457d-8829-69eea05166f3Chamorro, Harold R.59e2dcd8-f603-4e1f-8459-da694d5a324d2022-01-26T14:18:46Z2022-01-26T14:18:46Z2021-06-242022-01-24Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124. https://doi.org/10.3390/sym13071124https://hdl.handle.net/20.500.12585/10406https://doi.org/10.3390/sym13071124Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of the optimal load redistribution in electrical three-phase medium-voltage grids is addressed in this research from the point of view of mixed-integer convex optimization. The mathematical formulation of the load redistribution problem is developed in terminals of the distribution node by accumulating all active and reactive power loads per phase. These loads are used to propose an objective function in terms of minimization of the average unbalanced (asymmetry) grade of the network with respect to the ideal mean consumption per-phase. The objective function is defined as the l1 -norm which is a convex function. As the constraints consider the binary nature of the decision variable, each node is conformed by a 3 × 3 matrix where each row and column have to sum 1, and two equations associated with the load redistribution at each phase for each of the network nodes. Numerical results demonstrate the efficiency of the proposed mixed-integer convex model to equilibrate the power consumption per phase in regards with the ideal value in three different test feeders, which are composed of 4, 15, and 37 buses, respectively.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computation - vol. 9 n° 7 2021Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Conductor selectionMathematical optimizationDistribution systemsThree-phasePower flowEnergy lossesVortex search algorithmLEMBCartagena de IndiasBina, M.T.; Kashefi, A. Three-phase unbalance of distribution systems: Complementary analysis and experimental case study. Int. J. Electr. Power Energy Syst. 2011, 33, 817–826, doi:10.1016/j.ijepes.2010.12.003.Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180, doi:10.1109/tpwrs.2011.2161349Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282, doi:10.3390/en14051282Caicedo, J.E.; Romero, A.A.; Zini, H.C. Assessment of the harmonic distortion in residential distribution networks: Literature review. Ing. Investig. 2017, 37, 72–84, doi:10.15446/ing.investig.v37n3.64913Li, Q.; Ayyanar, R.; Vittal, V. Convex Optimization for DES Planning and Operation in Radial Distribution Systems With High Penetration of Photovoltaic Resources. IEEE Trans. Sustain. Energy 2016, 7, 985–995, doi:10.1109/tste.2015.2509648Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175, doi:10.3390/app11052175Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914, doi:10.3390/en13184914.Sadiq, A.; Adamu, S.; Buhari, M. Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS. Eng. Sci. Technol. Int. J. 2019, 22, 33–46, doi:10.1016/j.jestch.2018.09.013.Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418, doi:10.1016/j.asej.2019.08.011Dall’Anese, E.; Giannakis, G.B. Convex distribution system reconfiguration using group sparsity. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; doi:10.1109/pesmg.2013.6672702Khodr, H.; Zerpa, I.; de Jesu’s, P.D.O.; Matos, M. Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006; doi:10.1109/tdcla.2006.311368Montoya, O.D.; Fuentes, J.E.; Moya, F.D.; Barrios, J.Á.; Chamorro, H.R. Reduction of Annual Operational Costs in Power Systems through the Optimal Siting and Sizing of STATCOMs. Appl. Sci. 2021, 11, 4634, doi:10.3390/app11104634Saif, A.M.; Buccella, C.; Patel, V.; Tinari, M.; Cecati, C. Design and Cost Analysis for STATCOM in Low and Medium Voltage Systems. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018, doi:10.1109/iecon.2018.8591502Castiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of DSTATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452, doi:10.3390/electronics10121452.Shojaei, F.; Rastegar, M.; Dabbaghjamanesh, M. Simultaneous placement of tie-lines and distributed generations to optimize distribution system post-outage operation and minimize energy losses. CSEE J. Power Energy Syst. 2020, doi:10.17775/cseejpes.2019.03220.Arias, J.; Calle, M.; Turizo, D.; Guerrero, J.; Candelo-Becerra, J. Historical Load Balance in Distribution Systems Using the Branch and Bound Algorithm. Energies 2019, 12, 1219, doi:10.3390/en12071219Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Hincapié, R.A.; Granada, M. Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation 2021, 9, 67, doi:10.3390/computation9060067Granada-Echeverri, M.; Gallego-Rendón, R.A.; López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Y Cienc. 2012, 8, 121–140, doi:10.17230/ingciencia.8.15.6Garcés, A.; Castaño, J.C.; Rios, M.A. Phase Balancing in Power Distribution Grids: A Genetic Algorithm with a GroupBased Codification. In Energy Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 325–342, doi:10.1007/978-3-030-36115-0_11.Ghasemi, S. Balanced and unbalanced distribution networks reconfiguration considering reliability indices. Ain Shams Eng. J. 2018, 9, 1567–1579, doi:10.1016/j.asej.2016.11.010Toma, N.; Ivanov, O.; Neagu, B.; Gavrila, M. A PSO Algorithm for Phase Load Balancing in Low Voltage Distribution Networks. In Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), Ia¸si, Romania, 18–19 October 2018; doi:10.1109/icepe.2018.8559805Babu, P.R.; Shenoy, R.; Ramya, N.; Shetty, S. Implementation of ACO technique for load balancing through reconfiguration in electrical distribution system. In Proceedings of the 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, Kerala, 24–26 July 2014; doi:10.1109/aicera.2014.6908233Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972, doi:10.3390/app11051972.Baes, M.; Oertel, T.; Wagner, C.; Weismantel, R. Mirror-Descent Methods in Mixed-Integer Convex Optimization. In Facets of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–131, doi:10.1007/978-3-642-38189-8_5Benson, H.Y.; Ümit, S. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36, doi:10.1287/educ.2013.0115.Wang, J.W.; Wang, H.F.; Zhang, W.J.; Ip, W.H.; Furuta, K. Evacuation Planning Based on the Contraflow Technique With Consideration of Evacuation Priorities and Traffic Setup Time. IEEE Trans. Intell. Transp. Syst. 2013, 14, 480–485, doi:10.1109/tits.2012.2204402.. Alemany, J.; Kasprzyk, L.; Magnago, F. Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets. Electr. Power Syst. Res. 2018, 160, 429–438, doi:10.1016/j.epsr.2018.03.019.Montoya, O.D.; Gil-González, W.; Molina-Cabrera, A. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources. DYNA 2021, 88, 178–184, doi:10.15446/dyna.v88n217.93099.Aceituno-Cabezas, B.; Dai, H.; Cappelletto, J.; Grieco, J.C.; Fernandez-Lopez, G. A mixed-integer convex optimization framework for robust multilegged robot locomotion planning over challenging terrain. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; doi:10.1109/iros.2017.8206313.Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511, doi:10.3390/en11030511.Zhang, W.; van Luttervelt, C. Toward a resilient manufacturing system. CIRP Ann. 2011, 60, 469–472, doi:10.1016/j.cirp.2011.03.041.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdf[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdfapplication/pdf376080https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/4/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdfd32e40d8c47405d73b19c6847016a828MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/5/license_rdf4460e5956bc1d1639be9ae6146a50347MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/6/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD56TEXT[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdf.txt[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdf.txtExtracted texttext/plain49599https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/7/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdf.txt02d14903c9fce16de18d2a29266e0da3MD57THUMBNAIL[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdf.jpg[Art. 30] Optimal Demand Reconfiguration in T_Oscar Danilo Montoya.pdf.jpgGenerated Thumbnailimage/jpeg99585https://repositorio.utb.edu.co/bitstream/20.500.12585/10406/8/%5bArt.%2030%5d%20Optimal%20Demand%20Reconfiguration%20in%20T_Oscar%20Danilo%20Montoya.pdf.jpge995fea2bc6cfd448c5e690e694ec1e0MD5820.500.12585/10406oai:repositorio.utb.edu.co:20.500.12585/104062022-01-28 02:22:35.555Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |