An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room

There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the...

Full description

Autores:
Kuang-Sheng, lu
Iskandar Muda
Ming-Hung, Lin
Ngakan Ketut Acwin Dwijendra
carrillo caraballo, Gaylord
Alviz-Meza, Anibal
cardenas escrocia, yulineth
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12423
Acceso en línea:
https://hdl.handle.net/20.500.12585/12423
https://doi.org/10.3390/su15021728
Palabra clave:
gene expression programming
gravitational search algorithm
office room’s window
machine learning
daylight
optimization
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d0da5cdb4f38ce9464ffc9648e1e5971
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12423
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
spellingShingle An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
gene expression programming
gravitational search algorithm
office room’s window
machine learning
daylight
optimization
title_short An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_full An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_fullStr An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_full_unstemmed An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_sort An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
dc.creator.fl_str_mv Kuang-Sheng, lu
Iskandar Muda
Ming-Hung, Lin
Ngakan Ketut Acwin Dwijendra
carrillo caraballo, Gaylord
Alviz-Meza, Anibal
cardenas escrocia, yulineth
dc.contributor.author.none.fl_str_mv Kuang-Sheng, lu
Iskandar Muda
Ming-Hung, Lin
Ngakan Ketut Acwin Dwijendra
carrillo caraballo, Gaylord
Alviz-Meza, Anibal
cardenas escrocia, yulineth
dc.subject.keywords.spa.fl_str_mv gene expression programming
gravitational search algorithm
office room’s window
machine learning
daylight
optimization
topic gene expression programming
gravitational search algorithm
office room’s window
machine learning
daylight
optimization
description There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-25T12:09:34Z
dc.date.available.none.fl_str_mv 2023-07-25T12:09:34Z
dc.date.issued.none.fl_str_mv 2023-01-16
dc.date.submitted.none.fl_str_mv 2023-07-24
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Liu, K.-S.; Muda, I.; Lin, M.-H.; Dwijendra, N.K.A.; Carrillo Caballero, G.; Alviz-Meza, A.;Cárdenas-Escrocia, Y. An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room. Sustainability 2023,15, 1728. https://doi.org/10.3390/su15021728
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12423
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/su15021728
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Liu, K.-S.; Muda, I.; Lin, M.-H.; Dwijendra, N.K.A.; Carrillo Caballero, G.; Alviz-Meza, A.;Cárdenas-Escrocia, Y. An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room. Sustainability 2023,15, 1728. https://doi.org/10.3390/su15021728
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12423
https://doi.org/10.3390/su15021728
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Sustainability
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/1/sustainability-15-01728.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/4/sustainability-15-01728.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/5/sustainability-15-01728.pdf.jpg
bitstream.checksum.fl_str_mv 36571b604e47cc2c1f555266bba5b692
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
d3823a4c7fd4110ef21160bebd5bd541
b0a2bdbe9c478de989cef4ae39aeefd3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021621609922560
spelling Kuang-Sheng, lu67adf9b5-dd17-46bf-be0d-dab9e16d3485Iskandar Muda499909c8-5ba7-45e3-ba3d-fc0483752d41Ming-Hung, Lin2c5578bf-f36b-429c-8286-0c71a06c2125Ngakan Ketut Acwin Dwijendra6d96bbce-effc-4e93-9c8c-44656dfb53c9carrillo caraballo, Gaylord132dcdc6-1619-4c81-8869-eb5853e32fe0Alviz-Meza, Anibal985ee3fd-2926-4b3f-a240-a73fbfd22aebcardenas escrocia, yulinethc34b2ff7-17d2-4340-a0d5-5beb1999ce452023-07-25T12:09:34Z2023-07-25T12:09:34Z2023-01-162023-07-24Liu, K.-S.; Muda, I.; Lin, M.-H.; Dwijendra, N.K.A.; Carrillo Caballero, G.; Alviz-Meza, A.;Cárdenas-Escrocia, Y. An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room. Sustainability 2023,15, 1728. https://doi.org/10.3390/su15021728https://hdl.handle.net/20.500.12585/12423https://doi.org/10.3390/su15021728Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThere are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2SustainabilityAn Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Roominfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bccegene expression programminggravitational search algorithmoffice room’s windowmachine learningdaylightoptimizationCartagena de IndiasCampus TecnológicoPúblico generalPilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S. Multi-Objective Optimisation Framework for Designing Office Windows: Quality of View, Daylight and Energy Efficiency. Appl. Energy 2020, 261, 114356.Sadick, A.-M.; Kamardeen, I. Enhancing Employees’ Performance and Well-Being with Nature Exposure Embedded Office Workplace Design. J. Build. Eng. 2020, 32, 101789.Anand, P.; Cheong, D.; Sekhar, C.; Santamouris, M.; Kondepudi, S. Energy Saving Estimation for Plug and Lighting Load Using Occupancy Analysis. Renew. Energy 2019, 143, 1143–1161Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar Power Technology for Electricity Generation: A Critical Review. Energy Sci. Eng. 2018, 6, 340–361Azizi, H.; Nejatian, N. Evaluation of the Climate Change Impact on the Intensity and Return Period for Drought Indices of SPI and SPEI (Study Area: Varamin Plain). Water Supply 2022, 22, 4373–4386Yavari, F.; Salehi Neyshabouri, S.A.; Yazdi, J.; Molajou, A.; Brysiewicz, A. A Novel Framework for Urban Flood Damage Assessment. Water Resour. Manag. 2022, 36, 1991–2011Karimi, G.; Moradi, Y. Buffer Insertion for Delay Minimization in RLC Interconnects Using Cuckoo Optimization Algorithm. Analog Integr. Circuits Signal Process. 2019, 99, 111–121.Omrani, M.M. Techno-Economic and Environmental Analysis of Floating Photovoltaic Techno-Economic and Environmental Analysis of Floating Photovoltaic Power Plants: A Case Study of Iran. Renew. Energy Res. Appl. 2022, 4, 41–54.Jalali, Z.; Noorzai, E.; Heidari, S. Design and Optimization of Form and Facade of an Office Building Using the Genetic Algorithm. Sci. Technol. Built Environ. 2020, 26, 128–140O’Brien, W.; Wagner, A.; Schweiker, M.; Mahdavi, A.; Day, J.; Kjærgaard, M.B.; Carlucci, S.; Dong, B.; Tahmasebi, F.; Yan, D.; et al. Introducing IEA EBC Annex 79: Key Challenges and Opportunities in the Field of Occupant-Centric Building Design and Operation. Build. Environ. 2020, 178, 106738Elsheikh, A.H.; Shanmugan, S.; Sathyamurthy, R.; Kumar Thakur, A.; Issa, M.; Panchal, H.; Muthuramalingam, T.; Kumar, R.; Sharifpur, M. Low-Cost Bilayered Structure for Improving the Performance of Solar Stills: Performance/Cost Analysis and Water Yield Prediction Using Machine Learning. Sustain. Energy Technol. Assess. 2022, 49, 101783Ahmadi, M.H.; Baghban, A.; Salwana, E.; Sadeghzadeh, M.; Zamen, M.; Shamshirband, S.; Kumar, R. Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Preprints 2019, 2019050033.Sabbagh, O.; Fanaei, M.A.; Arjomand, A.; Hossein Ahmadi, M. Multi-Objective Optimization Assessment of a New Integrated Scheme for Co-Production of Natural Gas Liquids and Liquefied Natural Gas. Sustain. Energy Technol. Assess. 2021, 47, 101493.Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50.Ahmadi, M.H.; Açıkkalp, E. Exergetic Dimensions of Energy Systems and Processes. J. Therm. Anal. Calorim. 2021, 145, 631–634Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable Energy Communities under the 2019 European Clean Energy Package— Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev. 2020, 122, 109489.Fessler, D.C. The Energy Disruption Triangle: Three Sectors That Will Change How We Generate, Use, and Store Energy; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781119347132.Li, Q.; Loy-Benitez, J.; Nam, K.; Hwangbo, S.; Rashidi, J.; Yoo, C. Sustainable and Reliable Design of Reverse Osmosis Desalination with Hybrid Renewable Energy Systems through Supply Chain Forecasting Using Recurrent Neural Networks. Energy 2019, 178, 277–292.Sudharshan, K.; Naveen, C.; Vishnuram, P.; Krishna Rao Kasagani, D.V.S.; Nastasi, B. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction. Energies 2022, 15, 6267Davoodi, A.; Abbasi, A.R.; Nejatian, S. Multi-Objective Techno-Economic Generation Expansion Planning to Increase the Penetration of Distributed Generation Resources Based on Demand Response Algorithms. Int. J. Electr. Power Energy Syst. 2022, 138, 107923Dagoumas, A.S.; Koltsaklis, N.E. Review of Models for Integrating Renewable Energy in the Generation Expansion Planning. Appl. Energy 2019, 242, 1573–1587.Taherkhani, M.; Hosseini, S.H.; Javadi, M.S.; Catalão, J.P.S. Scenario-Based Probabilistic Multi-Stage Optimization for Transmission Expansion Planning Incorporating Wind Generation Integration. Electr. Power Syst. Res. 2020, 189, 106601Pokhrel, S.; Amiri, L.; Zueter, A.; Poncet, S.; Hassani, F.P.; Sasmito, A.P.; Ghoreishi-Madiseh, S.A. Thermal Performance Evaluation of Integrated Solar-Geothermal System; a Semi-Conjugate Reduced Order Numerical Model. Appl. Energy 2021, 303, 117676.Paliwal, P.; Webber, J.L.; Mehbodniya, A.; Haq, M.A.; Kumar, A.; Chaurasiya, P.K. Multi-Agent-Based Approach for Gener ation Expansion Planning in Isolated Micro-Grid with Renewable Energy Sources and Battery Storage. J. Supercomput. 2022, 78, 18497–18523.Sweerts, B.; Pfenninger, S.; Yang, S.; Folini, D.; van der Zwaan, B.; Wild, M. Estimation of Losses in Solar Energy Production from Air Pollution in China since 1960 Using Surface Radiation Data. Nat. Energy 2019, 4, 657–663Azimi, H.; Bonakdari, H.; Ebtehaj, I. Gene Expression Programming-Based Approach for Predicting the Roller Length of a Hydraulic Jump on a Rough Bed. ISH J. Hydraul. Eng. 2021, 27, 77–87.Pirzadeh Ashraf, B.; Mojtahedi, A.; Dadashzadeh, M. Prediction of dissolved oxygen in wetlands using FCM-ANFIS model—A Case Study: Choghakhor Wetland. J. Iran. Water Eng. Res. 2022, 2, 33–50Han, T.; Ansari, N. Provisioning Green Energy for Base Stations in Heterogeneous Networks. IEEE Trans. Veh. Technol. 2016, 65, 5439–5448.Drachal, K.; Pawłowski, M. A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities. Economies 2021, 9, 6.Tijani, I.A.; Zayed, T. Gene Expression Programming Based Mathematical Modeling for Leak Detection of Water Distribution Networks. Measurement 2022, 188, 110611.Mittal, H.; Tripathi, A.; Pandey, A.C.; Pal, R. Gravitational Search Algorithm: A Comprehensive Analysis of Recent Variants. Multimed. Tools Appl. 2021, 80, 7581–7608.Sabri, N.M.; Puteh, M.; Mahmood, M.R. An Overview of Gravitational Search Algorithm Utilization in Optimization Problems. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 61–66.Wang, Y.; Gao, S.; Yu, Y.; Cai, Z.; Wang, Z. A Gravitational Search Algorithm with Hierarchy and Distributed Framework. Knowl. -Based Syst. 2021, 218, 106877Rashedi, E.; Rashedi, E.; Nezamabadi-pour, H. A Comprehensive Survey on Gravitational Search Algorithm. Swarm Evol. Comput. 2018, 41, 141–158.Younes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A Memory-Based Gravitational Search Algorithm for Solving Economic Dispatch Problem in Micro-Grid. Ain Shams Eng. J. 2021, 12, 1985–1994.Campbell, J.E.; Carmichael, G.R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D.R.; Blake, N.J.; Vay, S.A.; Collatz, G.J.; Baker, I.; et al. Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season. Science 2008, 322, 1085–1088.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALsustainability-15-01728.pdfsustainability-15-01728.pdfapplication/pdf3457404https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/1/sustainability-15-01728.pdf36571b604e47cc2c1f555266bba5b692MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsustainability-15-01728.pdf.txtsustainability-15-01728.pdf.txtExtracted texttext/plain59031https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/4/sustainability-15-01728.pdf.txtd3823a4c7fd4110ef21160bebd5bd541MD54THUMBNAILsustainability-15-01728.pdf.jpgsustainability-15-01728.pdf.jpgGenerated Thumbnailimage/jpeg7987https://repositorio.utb.edu.co/bitstream/20.500.12585/12423/5/sustainability-15-01728.pdf.jpgb0a2bdbe9c478de989cef4ae39aeefd3MD5520.500.12585/12423oai:repositorio.utb.edu.co:20.500.12585/124232023-07-26 00:17:40.285Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=