Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods

The modest objective is to check the integrated effect of energy storage systems (ESSs) and distributed generations (DGs) and compare the optimization of the size and location of ESS and DG to explore its challenges for smart grids (SGs) modernization. The research enlisted different algorithms for...

Full description

Autores:
Rajagopalan, Arul
Swaminathan, Dhivya
Alharbi, Meshal
Sengan, Sudhakar
Montoya, Oscar Danilo
El-Shafai, Walid
. Fouda, Mostafa M
Aly, Moustafa H.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12389
Acceso en línea:
https://hdl.handle.net/20.500.12585/12389
Palabra clave:
Placement;
Active Distribution Network;
Voltage Stability
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d00f4ac600d84a1a77a3b75e423c9dc6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12389
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
title Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
spellingShingle Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
Placement;
Active Distribution Network;
Voltage Stability
LEMB
title_short Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
title_full Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
title_fullStr Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
title_full_unstemmed Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
title_sort Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods
dc.creator.fl_str_mv Rajagopalan, Arul
Swaminathan, Dhivya
Alharbi, Meshal
Sengan, Sudhakar
Montoya, Oscar Danilo
El-Shafai, Walid
. Fouda, Mostafa M
Aly, Moustafa H.
dc.contributor.author.none.fl_str_mv Rajagopalan, Arul
Swaminathan, Dhivya
Alharbi, Meshal
Sengan, Sudhakar
Montoya, Oscar Danilo
El-Shafai, Walid
. Fouda, Mostafa M
Aly, Moustafa H.
dc.subject.keywords.spa.fl_str_mv Placement;
Active Distribution Network;
Voltage Stability
topic Placement;
Active Distribution Network;
Voltage Stability
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The modest objective is to check the integrated effect of energy storage systems (ESSs) and distributed generations (DGs) and compare the optimization of the size and location of ESS and DG to explore its challenges for smart grids (SGs) modernization. The research enlisted different algorithms for cost-effectiveness, security, voltage control, and less power losses. From this perspective, optimization of the distribution network’s energy storage and capacity are being performed using a variety of methods, including the particle swarm, ant-lion optimization, genetic, and flower pollination algorithms. The experimental outcomes demonstrate the effectiveness of these techniques in lowering distribution network operating costs and controlling system load fluctuations. The efficiency and dependability of the distribution network (DN) are both maximized by these strategies. © 2022 by the authors.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:49:54Z
dc.date.available.none.fl_str_mv 2023-07-21T20:49:54Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12389
dc.identifier.doi.none.fl_str_mv 10.3390/en15238889
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12389
identifier_str_mv 10.3390/en15238889
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/1/energies-15-08889.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/4/energies-15-08889.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/5/energies-15-08889.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
25cac34d92c4e68e194c1237de01a4c0
e20ad307a1c5f3f25af9304a7a7c86b6
2d57c5f13abbae8aeb4626411a33541a
88c6c7def7a3431d96a3f201f9fb428f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021581024788480
spelling Rajagopalan, Arul6d04d6b3-17a1-49be-a90b-6ea66be6d1c6Swaminathan, Dhivya968eaf87-2f22-4a9d-9bc7-920cdc7e276eAlharbi, Meshal35513de8-9d6f-4f6b-ae97-39fc59e32c9aSengan, Sudhakarcff77a4e-5ee2-406a-86fa-9b23fd7c9696Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8El-Shafai, Walid447208d4-d332-422d-9d79-e78dda931f16. Fouda, Mostafa M0bd7be6b-cacc-49b4-ad5b-478473204bd4Aly, Moustafa H.b6fd079a-1fb2-45d7-bf78-4bf6697ca31d2023-07-21T20:49:54Z2023-07-21T20:49:54Z20222023https://hdl.handle.net/20.500.12585/1238910.3390/en15238889Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe modest objective is to check the integrated effect of energy storage systems (ESSs) and distributed generations (DGs) and compare the optimization of the size and location of ESS and DG to explore its challenges for smart grids (SGs) modernization. The research enlisted different algorithms for cost-effectiveness, security, voltage control, and less power losses. From this perspective, optimization of the distribution network’s energy storage and capacity are being performed using a variety of methods, including the particle swarm, ant-lion optimization, genetic, and flower pollination algorithms. The experimental outcomes demonstrate the effectiveness of these techniques in lowering distribution network operating costs and controlling system load fluctuations. The efficiency and dependability of the distribution network (DN) are both maximized by these strategies. © 2022 by the authors.18 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesModernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methodsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Placement;Active Distribution Network;Voltage StabilityLEMBCartagena de IndiasVita, V., Christodoulou, C., Zafeiropoulos, I., Gonos, I., Asprou, M., Kyriakides, E. Evaluating the flexibility benefits of smart grid innovations in transmission networks (2021) Applied Sciences (Switzerland), 11 (22), art. no. 10692. Cited 16 times. https://www.mdpi.com/2076-3417/11/22/10692/pdf doi: 10.3390/app112210692Mladenov, V., Chobanov, V., Seritan, G.C., Porumb, R.F., Enache, B.-A., Vita, V., Stănculescu, M., (...), Bargiotas, D. A Flexibility Market Platform for Electricity System Operators Using Blockchain Technology (2022) Energies, 15 (2), art. no. 539. Cited 10 times. https://www.mdpi.com/1996-1073/15/2/539/pdf doi: 10.3390/en15020539Gao, T., Jiang, L., Liu, K., Xiong, D., Lin, Z., Bu, W., Chen, Y. Field Exploration and Analysis of Power Grid Side Battery Energy Storage System (2021) IEEE Access, 9, art. no. 9335935, pp. 63213-63218. Cited 7 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3054620Zhang, Y., Srivastava, A. Voltage control strategy for energy storage system in sustainable distribution system operation (2021) Energies, 14 (4), art. no. 832. Cited 14 times. https://www.mdpi.com/1996-1073/14/4/832/pdf doi: 10.3390/en14040832Sikorski, T., Jasiński, M., Ropuszyńska-Surma, E., Wȩlglarz, M., Kaczorowska, D., Kostyla, P., Leonowicz, Z., (...), Solak, B. A case study on distributed energy resources and energy-storage systems in a virtual power plant concept: Technical aspects (Open Access) (2020) Energies, 13 (12), art. no. en13123086. Cited 27 times. https://www.mdpi.com/1996-1073/13/12/3086 doi: 10.3390/en13123086Li, X., Ma, R., Gan, W., Yan, S. Optimal Dispatch for Battery Energy Storage Station in Distribution Network Considering Voltage Distribution Improvement and Peak Load Shifting (2022) Journal of Modern Power Systems and Clean Energy, 10 (1), pp. 131-139. Cited 26 times. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8685265 doi: 10.35833/MPCE.2020.000183Minh, Q.N., Nguyen, V.-H., Quy, V.K., Ngoc, L.A., Chehri, A., Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy (2022) Energies, 15 (17), art. no. 6140. Cited 21 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176140Zhang, J., Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things (2021) IEEE Internet of Things Journal, 8 (10), art. no. 9264235, pp. 7789-7817. Cited 213 times. http://ieeexplore.ieee.org/servlet/opac?punumber=6488907 doi: 10.1109/JIOT.2020.3039359Wang, X., Liu, Y., Choo, K.-K.R. Fault-Tolerant Multisubset Aggregation Scheme for Smart Grid (Open Access) (2021) IEEE Transactions on Industrial Informatics, 17 (6), art. no. 9159848, pp. 4065-4072. Cited 43 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2020.3014401Yoldaş, Y., Önen, A., Muyeen, S.M., Vasilakos, A.V., Alan, İ. Enhancing smart grid with microgrids: Challenges and opportunities (Open Access) (2017) Renewable and Sustainable Energy Reviews, 72, pp. 205-214. Cited 305 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.01.064Saboori, H., Jadid, S. Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks (Open Access) (2020) Journal of Energy Storage, 31, art. no. 101615. Cited 43 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101615Mahdavi, S., Hemmati, R., Jirdehi, M.A. Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks (2018) Energy, 151, pp. 954-965. Cited 27 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.03.123Pirouzi, S., Latify, M.A., Yousefi, G.R. Conjugate active and reactive power management in a smart distribution network through electric vehicles: A mixed integer-linear programming model (2020) Sustainable Energy, Grids and Networks, 22, art. no. 100344. Cited 43 times. http://www.journals.elsevier.com/sustainable-energy-grids-and-networks/ doi: 10.1016/j.segan.2020.100344Chuang, A.S., Wu, F., Varaiya, P. A game-theoretic model for generation expansion planning: Problem formulation and numerical comparisons (Open Access) (2001) IEEE Transactions on Power Systems, 16 (4), pp. 885-891. Cited 208 times. doi: 10.1109/59.962441Park, Y.-M., Won, J.-R., Park, J.-B., Kim, D.-G. Generation expansion planning based on an advanced evolutionary programming (Open Access) (1999) IEEE Transactions on Power Systems, 14 (1), pp. 299-305. Cited 69 times. doi: 10.1109/59.744547Park, J.-B., Park, Y.-M., Won, J.-R., Lee, K.Y. An improved genetic algorithm for generation expansion planning (Open Access) (2000) IEEE Transactions on Power Systems, 15 (3), pp. 916-922. Cited 206 times. doi: 10.1109/59.871713 View at PublisherWang, Y., Zhang, N., Zhuo, Z., Kang, C., Kirschen, D. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch (2018) Applied Energy, 210, pp. 1141-1150. Cited 193 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.08.114Chahkandi Nejad, H., Tavakoli, S., Ghadimi, N., Korjani, S., Nojavan, S., Pashaei-Didani, H. Reliability based optimal allocation of distributed generations in transmission systems under demand response program (2019) Electric Power Systems Research, 176, art. no. 105952. Cited 70 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2019.105952Pandey, A.K., Kirmani, S. Optimal location and sizing of hybrid system by analytical crow search optimization algorithm (2020) International Transactions on Electrical Energy Systems, 30 (5), art. no. e12327. Cited 19 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038 doi: 10.1002/2050-7038.12327Khalid, M., Akram, U., Shafiq, S. Optimal planning of multiple distributed generating units and storage in active distribution networks (Open Access) (2018) IEEE Access, 6, art. no. 8476295, pp. 55234-55244. Cited 49 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2872788Lakum, A., Mahajan, V. Optimal placement and sizing of multiple active power filters in radial distribution system using grey wolf optimizer in presence of nonlinear distributed generation (2019) Electric Power Systems Research, 173, pp. 281-290. Cited 39 times. doi: 10.1016/j.epsr.2019.04.001Veeramsetty, V., Venkaiah, C., Kumar, D.M.V. Hybrid genetic dragonfly algorithm based optimal power flow for computing LMP at DG buses for reliability improvement (2018) Energy Systems, 9 (3), pp. 709-757. Cited 27 times. http://www.springer.com/engineering/energy+technology/journal/12667 doi: 10.1007/s12667-017-0268-2Grisales-Noreña, L.F., Montoya, O.D., Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms (2019) Journal of Energy Storage, 25, art. no. 100891. Cited 42 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2019.100891Mavalizadeh, H., Ahmadi, A., Heidari, A. Probabilistic multi-objective generation and transmission expansion planning problem using normal boundary intersection (2015) IET Generation, Transmission and Distribution, 9 (6), pp. 560-570. Cited 51 times. https://ietresearch.onlinelibrary.wiley.com/journal/17518695 doi: 10.1049/iet-gtd.2014.0278Palmintier, B.S., Webster, M.D. Impact of Operational Flexibility on Electricity Generation Planning with Renewable and Carbon Targets (2016) IEEE Transactions on Sustainable Energy, 7 (2), art. no. 7350236, pp. 672-684. Cited 156 times. doi: 10.1109/TSTE.2015.2498640Pereira, S., Ferreira, P., Vaz, A.I.F. Generation expansion planning with high share of renewables of variable output (Open Access) (2017) Applied Energy, 190, pp. 1275-1288. Cited 88 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.025Li, J., Shen, Z., Chen, X., Yang, S., Zhou, W., Wang, M., Wang, L., (...), Li, F. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications (Open Access) (2020) Nature Materials, 19 (9), pp. 999-1005. Cited 271 times. http://www.nature.com/nmat/ doi: 10.1038/s41563-020-0704-xHuang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., Wang, G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications (Open Access) (2019) Chemical Engineering Journal, 356, pp. 641-661. Cited 412 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2018.09.013Yao, F.-Z., Yuan, Q., Wang, Q., Wang, H. Multiscale structural engineering of dielectric ceramics for energy storage applications: From bulk to thin films (2020) Nanoscale, 12 (33), pp. 17165-17184. Cited 95 times. http://pubs.rsc.org/en/journals/journal/nr doi: 10.1039/d0nr04479bBozorgavari, S.A., Aghaei, J., Pirouzi, S., Nikoobakht, A., Farahmand, H., Korpås, M. Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study (Open Access) (2020) Renewable and Sustainable Energy Reviews, 123, art. no. 109739. Cited 55 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.109739Mehrjerdi, H., Hemmati, R., Farrokhi, E. Nonlinear stochastic modeling for optimal dispatch of distributed energy resources in active distribution grids including reactive power (2019) Simulation Modelling Practice and Theory, 94, pp. 1-13. Cited 21 times. http://www.sciencedirect.com/science/journal/1569190X doi: 10.1016/j.simpat.2019.01.005Arandian, B., Ardehali, M.M. Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm optimization algorithm (2017) Energy, Part 1 140, pp. 466-480. Cited 29 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.08.101Ahmadigorji, M., Amjady, N. A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm (2016) Energy, 102, pp. 199-215. Cited 46 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.02.088Rama Prabha, D., Jayabarathi, T. Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm (Open Access) (2016) Ain Shams Engineering Journal, 7 (2), pp. 683-694. Cited 143 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2015.05.014Injeti, S.K., Thunuguntla, V.K., Shareef, M. Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms (2015) International Journal of Electrical Power and Energy Systems, 69, pp. 441-455. Cited 77 times. doi: 10.1016/j.ijepes.2015.01.040Senthil kumar, J., Charles Raja, S., Srinivasan, D., Venkatesh, P. Hybrid renewable energy-based distribution system for seasonal load variations (2018) International Journal of Energy Research, 42 (3), pp. 1066-1087. Cited 43 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-114X doi: 10.1002/er.3902Roy, K., Mandal, K.K., Mandal, A.C. Application of ANFASO for optimal power flow management of MG-connected system with energy storage (Open Access) (2020) International Journal of Energy Research, 44 (7), pp. 5272-5286. Cited 8 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-114X doi: 10.1002/er.5273Kaveh, M.R., Hooshmand, R.-A., Madani, S.M. Simultaneous optimization of re-phasing, reconfiguration and DG placement in distribution networks using BF-SD algorithm (2018) Applied Soft Computing Journal, 62, pp. 1044-1055. Cited 46 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2017.09.041Segundo Sevilla, F.R., Parra, D., Wyrsch, N., Patel, M.K., Kienzle, F., Korba, P. Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration (Open Access) (2018) Journal of Energy Storage, 17, pp. 73-83. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.02.001Sok, V., Tayjasanant, T. Determination of optimal siting and sizing of energy storage system in PV-connected distribution systems considering minimum energy losses (2017) ECTI-CON 2017 - 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, art. no. 8096271, pp. 451-454. Cited 8 times. ISBN: 978-153860449-6 doi: 10.1109/ECTICon.2017.8096271Amooi, R., Moghaddas-Tafreshi, S.M. Operation of an active distribution network with PV and storage battery and vehicle charge station and modeling of uncertainty with copula model (Open Access) (2019) 2019 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, art. no. 8697757, pp. 407-414. Cited 5 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8692369 ISBN: 978-153869254-7 doi: 10.1109/PEDSTC.2019.8697757Kong, X., Liu, C., Shen, Y., Hu, W., Ma, T. Power supply reliability evaluation based on big data analysis for distribution networks considering uncertain factors (Open Access) (2020) Sustainable Cities and Society, 63, art. no. 102483. Cited 17 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2020.102483http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINALenergies-15-08889.pdfenergies-15-08889.pdfapplication/pdf3462564https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/1/energies-15-08889.pdf25cac34d92c4e68e194c1237de01a4c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-15-08889.pdf.txtenergies-15-08889.pdf.txtExtracted texttext/plain73282https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/4/energies-15-08889.pdf.txt2d57c5f13abbae8aeb4626411a33541aMD54THUMBNAILenergies-15-08889.pdf.jpgenergies-15-08889.pdf.jpgGenerated Thumbnailimage/jpeg8245https://repositorio.utb.edu.co/bitstream/20.500.12585/12389/5/energies-15-08889.pdf.jpg88c6c7def7a3431d96a3f201f9fb428fMD5520.500.12585/12389oai:repositorio.utb.edu.co:20.500.12585/123892023-07-22 00:18:16.066Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=