Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode

Over the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme p...

Full description

Autores:
Ramos, Helena M.
Coronado-Hernández, Oscar E.
Morgado, Pedro A.
Simão, Mariana
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12385
Acceso en línea:
https://hdl.handle.net/20.500.12585/12385
Palabra clave:
Micro-Hydro;
Hydropower;
Centrifugal Pumps
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_cee153c72e7d99b54033ef7bbf8b4b95
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12385
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
title Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
spellingShingle Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
Micro-Hydro;
Hydropower;
Centrifugal Pumps
LEMB
title_short Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
title_full Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
title_fullStr Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
title_full_unstemmed Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
title_sort Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode
dc.creator.fl_str_mv Ramos, Helena M.
Coronado-Hernández, Oscar E.
Morgado, Pedro A.
Simão, Mariana
dc.contributor.author.none.fl_str_mv Ramos, Helena M.
Coronado-Hernández, Oscar E.
Morgado, Pedro A.
Simão, Mariana
dc.subject.keywords.spa.fl_str_mv Micro-Hydro;
Hydropower;
Centrifugal Pumps
topic Micro-Hydro;
Hydropower;
Centrifugal Pumps
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Over the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme pressures that may occur during normal and emergency operating scenarios. This research describes essentially the turbine operation, although various boundary elements are mathematically formulated and presented to provide an understanding of the system complexity. Different numerical approaches are presented, based on the 1D method of characteristics (MOC) for the long hydraulic circuit, the dynamic turbine runner simulation technique for the behavior of the power station in turbine mode and the interaction with the fluid in the penstock, and a CFD model (2D and 3D) to analyze the flow behavior crossing the runner through the velocity fields and pressure contours. Additionally, the simulation results have been validated by experimental tests on different setups characterized by long conveyance systems, consisting of a small scale of pumps as turbines (at IST laboratory) and classical reaction turbines (at LNEC laboratory). Mathematical models, together with an intensive campaign of experiments, allow for the estimation of dynamic effects related to the extreme transient pressures, the fluid-structure interaction with rotational speed variation, and the change in the flow. In some cases, the runaway conditions can cause an overspeed of 2–2.5 of the rated rotational speed (NR) and an overpressure of 40–65% of the rated head (HR), showing significant impacts on the pressure wave propagation along the entire hydraulic circuit. Sensitivity analyses based on systematic numerical simulations of PATs (radial and axial types) and reaction turbines (Francis and Kaplan types) and comparisons with experiments are discussed. These evaluations demonstrate that the full-load rejection scenario can be dangerous for turbomachinery with low specific-speed (ns) values, in particular when associated with long penstocks and fast guide vane (or control valve) closing maneuver. © 2023 by the authors.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:49:15Z
dc.date.available.none.fl_str_mv 2023-07-21T20:49:15Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Ramos, H. M., Coronado-Hernández, O. E., Morgado, P. A., & Simão, M. (2023). Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode. Water, 15(11), 2034.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12385
dc.identifier.doi.none.fl_str_mv 10.3390/w15112034
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Ramos, H. M., Coronado-Hernández, O. E., Morgado, P. A., & Simão, M. (2023). Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode. Water, 15(11), 2034.
10.3390/w15112034
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12385
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 27 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Water (Switzerland)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/1/water-15-02034.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/4/water-15-02034.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/5/water-15-02034.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
b68e5079f8632b61076e35462e5401eb
70b371a58fd669ea8d2f1590435fe9bd
5c8a7a56ecb28aee9568b13eccfddfa6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021623688200192
spelling Ramos, Helena M.55b0330e-7043-4bb2-8745-c564ce43175aCoronado-Hernández, Oscar E.c3eeb30c-3946-406c-9961-fd362b8841f5Morgado, Pedro A.9f8c921b-26ef-4140-a411-194a4026f58eSimão, Mariana628365e9-7279-4852-b05b-dd69ae9de5ea2023-07-21T20:49:15Z2023-07-21T20:49:15Z20232023Ramos, H. M., Coronado-Hernández, O. E., Morgado, P. A., & Simão, M. (2023). Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode. Water, 15(11), 2034.https://hdl.handle.net/20.500.12585/1238510.3390/w15112034Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOver the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme pressures that may occur during normal and emergency operating scenarios. This research describes essentially the turbine operation, although various boundary elements are mathematically formulated and presented to provide an understanding of the system complexity. Different numerical approaches are presented, based on the 1D method of characteristics (MOC) for the long hydraulic circuit, the dynamic turbine runner simulation technique for the behavior of the power station in turbine mode and the interaction with the fluid in the penstock, and a CFD model (2D and 3D) to analyze the flow behavior crossing the runner through the velocity fields and pressure contours. Additionally, the simulation results have been validated by experimental tests on different setups characterized by long conveyance systems, consisting of a small scale of pumps as turbines (at IST laboratory) and classical reaction turbines (at LNEC laboratory). Mathematical models, together with an intensive campaign of experiments, allow for the estimation of dynamic effects related to the extreme transient pressures, the fluid-structure interaction with rotational speed variation, and the change in the flow. In some cases, the runaway conditions can cause an overspeed of 2–2.5 of the rated rotational speed (NR) and an overpressure of 40–65% of the rated head (HR), showing significant impacts on the pressure wave propagation along the entire hydraulic circuit. Sensitivity analyses based on systematic numerical simulations of PATs (radial and axial types) and reaction turbines (Francis and Kaplan types) and comparisons with experiments are discussed. These evaluations demonstrate that the full-load rejection scenario can be dangerous for turbomachinery with low specific-speed (ns) values, in particular when associated with long penstocks and fast guide vane (or control valve) closing maneuver. © 2023 by the authors.27 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Water (Switzerland)Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Modeinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Micro-Hydro;Hydropower;Centrifugal PumpsLEMBCartagena de IndiasBurek, P., Satoh, Y., Fischer, G., Kahil, T., Jimenez, L., Scherzer, A., Tramberend, S., (...), Flörke, M. (2016) Water Futures and Solution: Fast Track Initiative (Final Report). Cited 156 times. IIASA, Laxemburg, AustriaSimão, M., Ramos, H.M. Hybrid pumped hydro storage energy solutions towards wind and PV integration: Improvement on flexibility, reliability and energy costs (2020) Water (Switzerland), 12 (9), art. no. 2457. Cited 20 times. https://res.mdpi.com/d_attachment/water/water-12-02457/article_deploy/water-12-02457-v2.pdf doi: 10.3390/w12092457Rogner, M., Troja, N. (2018) The World’s Water Battery: Pumped Hydropower Storage and the Clean Energy Transition. Cited 32 times. International Hydropower Association, London, UKPérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability (2017) Water (Switzerland), 9 (2), art. no. 97. Cited 99 times. http://www.mdpi.com/2073-4441/9/2/97/pdf doi: 10.3390/w9020097 View at PublisherPérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability (2017) Water (Switzerland), 9 (2), art. no. 97. Cited 99 times. http://www.mdpi.com/2073-4441/9/2/97/pdf doi: 10.3390/w9020097Carravetta, A., Del Giudice, G., Fecarotta, O., Gallagher, J., Cristina Morani, M., Ramos, H.M. Potential Energy, Economic, and Environmental Impacts of Hydro Power Pressure Reduction on the Water-Energy-Food Nexus (2022) Journal of Water Resources Planning and Management, 148 (5), art. no. 04022012. Cited 5 times. https://ascelibrary.org/journal/jwrmd5 doi: 10.1061/(ASCE)WR.1943-5452.0001541Fontanella, S., Fecarotta, O., Molino, B., Cozzolino, L., Morte, R.D. A performance prediction model for pumps as turbines (PATs) (2020) Water (Switzerland), 12 (4), art. no. 1175. Cited 14 times. https://www.mdpi.com/2073-4441/12/4/1175 doi: 10.3390/W12041175De Marchis, M., Milici, B., Volpe, R., Messineo, A. Energy saving in water distribution network through pump as turbine generators: Economic and environmental analysis (2016) Energies, 9 (11), art. no. 877. Cited 54 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en9110877Lima, G.M., Luvizotto, E., Brentan, B.M. Selection and location of Pumps as Turbines substituting pressure reducing valves (2017) Renewable Energy, 109, pp. 392-405. Cited 54 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2017.03.056Pérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Improved planning of energy recovery in water systems using a new analytic approach to PAT performance curves (2020) Water (Switzerland), 12 (2), art. no. 468. Cited 26 times. https://res.mdpi.com/d_attachment/water/water-12-00468/article_deploy/water-12-00468-v2.pdf doi: 10.3390/w12020468Ramos, H., Almeida, A.B. Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes (2001) Journal of Hydraulic Research, 39 (4), pp. 429-436. Cited 34 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221680109499847Ramos, H., de Almeida, A.B. Parametric analysis of water-hammer effects in small hydro schemes (2002) Journal of Hydraulic Engineering, 128 (7), pp. 689-696. Cited 32 times. doi: 10.1061/(ASCE)0733-9429(2002)128:7(689)Boulos, P.F., Karney, B.W., Wood, D.J., Lingireddy, S. Hydraulic transient guidelines for protecting water distribution systems (Open Access) (2005) Journal / American Water Works Association, 97 (5), pp. 111-124. Cited 121 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1551-8833 doi: 10.1002/j.1551-8833.2005.tb10892.xChaudhry, M.H. Applied hydraulic transients (Open Access) (2014) Applied Hydraulic Transients, 9781461485384, pp. 1-583. Cited 510 times. http://dx.doi.org/10.1007/978-1-4614-8538-4 ISBN: 978-146148538-4; 1461485371; 978-146148537-7 doi: 10.1007/978-1-4614-8538-4Pérez-Sánchez, M., López-Jiménez, P.A., Ramos, H.M. PATs operating in water networks under unsteady flow conditions: Control valve manoeuvre and overspeed effect (Open Access) (2018) Water (Switzerland), 10 (4), art. no. 529. Cited 13 times. http://www.mdpi.com/2073-4441/10/4/529/pdf doi: 10.3390/w10040529Lima, G.M., Luvizotto, E. Method to estimate complete curves of hydraulic pumps through the polymorphism of existing curves (2017) Journal of Hydraulic Engineering, 143 (8), art. no. 04017017. Cited 9 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001301Ramos, H., Borga, A. Pumps as turbines: An unconventional solution to energy production (Open Access) (1999) Urban Water, 1 (3), pp. 261-263. Cited 144 times. www.elsevier.com/inca/publications/store/6/0/1/3/4/8 doi: 10.1016/s1462-0758(00)00016-9Simão, M., Pérez-Sánchez, M., Carravetta, A., López-Jiménez, P., Ramos, H.M. Velocities in a centrifugal PAT operation: Experiments and CFD analyses (Open Access) (2018) Fluids, 3 (1), art. no. 3. Cited 11 times. https://www.mdpi.com/2311-5521/3/1/4/pdf doi: 10.3390/fluids3010003Simão, M., Pérez-Sánchez, M., Carravetta, A., Ramos, H.M. Flow conditions for PATS operating in parallel: Experimental and numerical analyses (Open Access) (2019) Energies, 12 (5), art. no. 901. Cited 12 times. https://www.mdpi.com/1996-1073/12/5 doi: 10.3390/en12050901Pérez-Sánchez, M., Simão, M., López-Jiménez, P.A., Ramos, H.M. CFD Analyses and experiments in a pat modeling: pressure variation and system efficiency (2017) Fluids, 2 (4), art. no. 2040051. Cited 10 times. https://www.mdpi.com/2311-5521/2/4/51/pdf doi: 10.3390/fluids2040051Liu, K., Yang, F., Yang, Z., Zhu, Y., Cheng, Y. Runner lifting-up during load rejection transients of a Kaplan turbine: Flow mechanism and solution (2019) Energies, 12 (24), art. no. 4781. Cited 11 times. https://www.mdpi.com/1996-1073/12/24 doi: 10.3390/en12244781Zhang, M., Feng, J., Zhao, Z., Zhang, W., Zhang, J., Xu, B. A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability (Open Access) (2022) Energies, 15 (19), art. no. 7089. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197089Mahfoud, R.J., Alkayem, N.F., Zhang, Y., Zheng, Y., Sun, Y., Alhelou, H.H. Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives (2023) Renewable and Sustainable Energy Reviews, 178, art. no. 113267. Cited 2 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2023.113267Samora, I., Hasmatuchi, V., Münch-Alligné, C., Franca, M.J., Schleiss, A.J., Ramos, H.M. Experimental characterization of a five blade tubular propeller turbine for pipe inline installation (Open Access) (2016) Renewable Energy, 95, pp. 356-366. Cited 72 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2016.04.023http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALwater-15-02034.pdfwater-15-02034.pdfapplication/pdf10342522https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/1/water-15-02034.pdfb68e5079f8632b61076e35462e5401ebMD51TEXTwater-15-02034.pdf.txtwater-15-02034.pdf.txtExtracted texttext/plain111183https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/4/water-15-02034.pdf.txt70b371a58fd669ea8d2f1590435fe9bdMD54THUMBNAILwater-15-02034.pdf.jpgwater-15-02034.pdf.jpgGenerated Thumbnailimage/jpeg7904https://repositorio.utb.edu.co/bitstream/20.500.12585/12385/5/water-15-02034.pdf.jpg5c8a7a56ecb28aee9568b13eccfddfa6MD5520.500.12585/12385oai:repositorio.utb.edu.co:20.500.12585/123852023-07-22 00:18:13.863Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=