Spatio-Temporal Filtering for Evoked Potentials Detection

We propose the new application of the spatio-temporal filtering (STF) method, which is a detection of visual evoked potentials applied to brain-computer interfaces (BCI). STF aims in creating a new, enhanced channel basing on the current and the neighbouring samples from all the input channels. The...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9163
Acceso en línea:
https://hdl.handle.net/20.500.12585/9163
Palabra clave:
Brain-computer interfaces
Spatio temporal filtering
Visual evoked potentials
Electrophysiology
Classification accuracy
Generalized eigen decomposition
Input channels
New applications
Spatio temporal filtering
Spatio-temporal filter
Temporal approach
Visual evoked potential
Brain computer interface
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_cdda50fa1b21efc938289a20d2b3449d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9163
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Spatio-Temporal Filtering for Evoked Potentials Detection
title Spatio-Temporal Filtering for Evoked Potentials Detection
spellingShingle Spatio-Temporal Filtering for Evoked Potentials Detection
Brain-computer interfaces
Spatio temporal filtering
Visual evoked potentials
Electrophysiology
Classification accuracy
Generalized eigen decomposition
Input channels
New applications
Spatio temporal filtering
Spatio-temporal filter
Temporal approach
Visual evoked potential
Brain computer interface
title_short Spatio-Temporal Filtering for Evoked Potentials Detection
title_full Spatio-Temporal Filtering for Evoked Potentials Detection
title_fullStr Spatio-Temporal Filtering for Evoked Potentials Detection
title_full_unstemmed Spatio-Temporal Filtering for Evoked Potentials Detection
title_sort Spatio-Temporal Filtering for Evoked Potentials Detection
dc.contributor.editor.none.fl_str_mv Gruca A.
Deorowicz S.
Harezlak K.
Piotrowska A.
Czachorski T.
dc.subject.keywords.none.fl_str_mv Brain-computer interfaces
Spatio temporal filtering
Visual evoked potentials
Electrophysiology
Classification accuracy
Generalized eigen decomposition
Input channels
New applications
Spatio temporal filtering
Spatio-temporal filter
Temporal approach
Visual evoked potential
Brain computer interface
topic Brain-computer interfaces
Spatio temporal filtering
Visual evoked potentials
Electrophysiology
Classification accuracy
Generalized eigen decomposition
Input channels
New applications
Spatio temporal filtering
Spatio-temporal filter
Temporal approach
Visual evoked potential
Brain computer interface
description We propose the new application of the spatio-temporal filtering (STF) method, which is a detection of visual evoked potentials applied to brain-computer interfaces (BCI). STF aims in creating a new, enhanced channel basing on the current and the neighbouring samples from all the input channels. The new channel of the better quality facilitates quick detection of visual evoked potential in the EEG recording by reducing number of averaging operations. The BCI experiments include precise information on the times the specific events took place. This feature allowed us to design very accurately the learning step which is based on generalized eigendecomposition and aims in determining the spatio-temporal filter weights. STF based algorithm allows to achieve good results for enhancement and detection of visual evoked potentials applied for brain-computer interfaces. Advantageous classification accuracies obtained with the use of combined spatial and temporal approach suggest the method can contribute to improvement of the existing solutions and stimulate development of more accurate and faster EEG based interfaces between machines and humans. © 2020, Springer Nature Switzerland AG.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:06Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:06Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Advances in Intelligent Systems and Computing; Vol. 1061, pp. 34-43
dc.identifier.isbn.none.fl_str_mv 9783030319632
dc.identifier.issn.none.fl_str_mv 21945357
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9163
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31964-9_4
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57202468264
55985160800
57210822856
identifier_str_mv Advances in Intelligent Systems and Computing; Vol. 1061, pp. 34-43
9783030319632
21945357
10.1007/978-3-030-31964-9_4
Universidad Tecnológica de Bolívar
Repositorio UTB
57202468264
55985160800
57210822856
url https://hdl.handle.net/20.500.12585/9163
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 2 October 2019 through 3 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075905215&doi=10.1007%2f978-3-030-31964-9_4&partnerID=40&md5=9c60e2a3b0cb717d0df3e7345b03dfad
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th International Conference on Man-Machine Interactions, ICMMI 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9163/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021658554400768
spelling Gruca A.Deorowicz S.Harezlak K.Piotrowska A.Czachorski T.Piela M.Kotas, MarianOrtiz S.H.C.2020-03-26T16:33:06Z2020-03-26T16:33:06Z2020Advances in Intelligent Systems and Computing; Vol. 1061, pp. 34-43978303031963221945357https://hdl.handle.net/20.500.12585/916310.1007/978-3-030-31964-9_4Universidad Tecnológica de BolívarRepositorio UTB572024682645598516080057210822856We propose the new application of the spatio-temporal filtering (STF) method, which is a detection of visual evoked potentials applied to brain-computer interfaces (BCI). STF aims in creating a new, enhanced channel basing on the current and the neighbouring samples from all the input channels. The new channel of the better quality facilitates quick detection of visual evoked potential in the EEG recording by reducing number of averaging operations. The BCI experiments include precise information on the times the specific events took place. This feature allowed us to design very accurately the learning step which is based on generalized eigendecomposition and aims in determining the spatio-temporal filter weights. STF based algorithm allows to achieve good results for enhancement and detection of visual evoked potentials applied for brain-computer interfaces. Advantageous classification accuracies obtained with the use of combined spatial and temporal approach suggest the method can contribute to improvement of the existing solutions and stimulate development of more accurate and faster EEG based interfaces between machines and humans. © 2020, Springer Nature Switzerland AG.Ministerstwo Nauki i Szkolnictwa Wyższego, MNiSW: BKM-RAu-3/2018This work was partially supported by the Ministry of Science and Higher Education funding for statutory activities of young researchers (BKM-RAu-3/2018).Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075905215&doi=10.1007%2f978-3-030-31964-9_4&partnerID=40&md5=9c60e2a3b0cb717d0df3e7345b03dfad6th International Conference on Man-Machine Interactions, ICMMI 2019Spatio-Temporal Filtering for Evoked Potentials Detectioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBrain-computer interfacesSpatio temporal filteringVisual evoked potentialsElectrophysiologyClassification accuracyGeneralized eigen decompositionInput channelsNew applicationsSpatio temporal filteringSpatio-temporal filterTemporal approachVisual evoked potentialBrain computer interface2 October 2019 through 3 October 2019Akram, F., Han, M., Kim, T., An efficient word typing P300-BCI system using amodified T9 interface and random forest classifier (2015) Comput. Biol. Med., 56, pp. 30-36Blankertz, B., Müller, K., Curio, G., Vaughan, T., Schalk, G., Wolpaw, J., Schlögl, A., Birbaumer, N., The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials (2004) IEEE Trans. Biomed. Eng., 51 (6), pp. 1044-1051Farwell, L.A., Donchin, E., Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials (1988) Electroencephalogr. Clin. Neurophysiol., 70, pp. 510-523Hoffmann, U., Vesin, J., Ebrahimi, T., Diserens, K., An efficient P300-based brain-computer interface for disabled subjects (2008) J. Neurosci. Meth., 167, pp. 115-125Kotas, M., Blaszczyk, J., Moron, T., Spatio-temporal FIR filter for fetal ECG extraction (2015) Int. J. Inf. Electron. Eng. IACSIT Press, 5 (1), pp. 10-14Kotas, M., Jezewski, J., Horoba, K., Matonia, A., Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Comput. Meth. Prog. Biomed., 104, pp. 1-9Kotas, M., Pander, T., Leski, J., Averaging of nonlinearly aligned signal cycles for noise suppression (2015) Biomed. Signal Process. Control, 21, pp. 157-168Krusienski, D., Sellers, E., Cabestaing, F., Bayoudh, S., McFarland, D., Vaughan, T., Wolpaw, J., A comparison of classification techniques for the P300 speller (2006) J. Neural Eng., 3 (4), pp. 299-305Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J., Toward enhanced P300 speller performance (2008) J. Neurosci. Meth., 167 (1), pp. 15-21Leski, J., Robust weighted averaging of biomedical signals (2002) IEEE Trans. Biomed. Eng., 49 (8), pp. 796-804Lotte, F., Bougrain, A., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F., A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update (2018) J. Neural Eng., 15 (3)Lotte, F., Congedo, M., Lecuyer, A., Arnaldi, Q.B., A review of classification algorithms for EEG-based brain-computer interfaces (2007) J. Neural Eng., 4, pp. R1-R13Momot, A., Momot, M., Leski, J., Bayesian and empirical bayesian approach to weighted averaging of ECG signal (2007) Tech. Sci., 55 (4)Waytowich, N., Lawhern, V., Bohannon, A., Ball, K., Lance, B., Spectraltransfer learning using information geometry for a user-independent brain-computer interface (2016) Front. Neurosci., 10 (430)Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki, A., Sparse Bayesian classification of EEG for brain-computer interface (2016) Neural Netw. Learn. Syst., 27 (11), pp. 2256-2267http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9163/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9163oai:repositorio.utb.edu.co:20.500.12585/91632023-04-24 09:39:41.451Repositorio Institucional UTBrepositorioutb@utb.edu.co