A predictive model for the missing people problem
The disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, th...
- Autores:
-
Delahoz-Domínguez, Enrique
Mendoza-Brand, Silvana
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12105
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12105
- Palabra clave:
- Homicide;
Serial Killer;
Sexual
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_cd770a4d61cdc0bb1de90d86c992261d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12105 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A predictive model for the missing people problem |
title |
A predictive model for the missing people problem |
spellingShingle |
A predictive model for the missing people problem Homicide; Serial Killer; Sexual LEMB |
title_short |
A predictive model for the missing people problem |
title_full |
A predictive model for the missing people problem |
title_fullStr |
A predictive model for the missing people problem |
title_full_unstemmed |
A predictive model for the missing people problem |
title_sort |
A predictive model for the missing people problem |
dc.creator.fl_str_mv |
Delahoz-Domínguez, Enrique Mendoza-Brand, Silvana |
dc.contributor.author.none.fl_str_mv |
Delahoz-Domínguez, Enrique Mendoza-Brand, Silvana |
dc.subject.keywords.spa.fl_str_mv |
Homicide; Serial Killer; Sexual |
topic |
Homicide; Serial Killer; Sexual LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, the police departments must develop a search task, in most cases with much uncertainty. In this research, a predictive model to predict missing people’s status is presented. The information used to create the model come from the Colombian legal Medicine Institute, in a public dataset composed of 6202 cases and 11 variables. The output variable was the final disappearance status, with the categories Appears Dead, Appears Alive, and Still Disappeared. Three supervised machine-learning algorithms were trained and tested for the model creation, K-Nearest Neighbours, Decision Trees, and Random Forest. The study was divided into three phases, first considering all the output categories. In the second phase, generating a binary classification for the Appeared and Not appeared instance. Thirdly, models were built to predict the status of appeared persons, Appears Alive or Appears Dead. The K-NN algorithm outperforms the other models with an Area under the curve value of 94.8%. © 2021 Romanian Society of Legal Medicine. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-14T13:52:49Z |
dc.date.available.none.fl_str_mv |
2023-07-14T13:52:49Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12105 |
dc.identifier.doi.none.fl_str_mv |
DOI:10.4323/rjlm.2021.74 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74 DOI:10.4323/rjlm.2021.74 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12105 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Romanian Journal of Legal MedicineVolume 29, Issue 1, Pages 74 - 80 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/1/74-80.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/4/74-80.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/5/74-80.pdf.jpg |
bitstream.checksum.fl_str_mv |
9540faeeb16290b9737319dd3048bfbf 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 a529a5e0fe77edf3fbbb43081cc487ea 2af172b0306f35f9ad72e715adf6c53b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021614650523648 |
spelling |
Delahoz-Domínguez, Enrique140641a4-ba89-4a1d-bbcb-0c3f2d597b0dMendoza-Brand, Silvanac777fd9f-6010-4fe0-859c-d47e861f8fb62023-07-14T13:52:49Z2023-07-14T13:52:49Z20212023Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74https://hdl.handle.net/20.500.12585/12105DOI:10.4323/rjlm.2021.74Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, the police departments must develop a search task, in most cases with much uncertainty. In this research, a predictive model to predict missing people’s status is presented. The information used to create the model come from the Colombian legal Medicine Institute, in a public dataset composed of 6202 cases and 11 variables. The output variable was the final disappearance status, with the categories Appears Dead, Appears Alive, and Still Disappeared. Three supervised machine-learning algorithms were trained and tested for the model creation, K-Nearest Neighbours, Decision Trees, and Random Forest. The study was divided into three phases, first considering all the output categories. In the second phase, generating a binary classification for the Appeared and Not appeared instance. Thirdly, models were built to predict the status of appeared persons, Appears Alive or Appears Dead. The K-NN algorithm outperforms the other models with an Area under the curve value of 94.8%. © 2021 Romanian Society of Legal Medicine.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Romanian Journal of Legal MedicineVolume 29, Issue 1, Pages 74 - 80A predictive model for the missing people probleminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Homicide;Serial Killer;SexualLEMBCartagena de IndiasBurch, RA. Presumed Dead: Why Arizona Should Shorten the Required Time for Beloved Missing Persons to Be Declared Legally Dead (2017) Ariz. Summit Law Rev, 10, p. 59. Cited 2 times.Yang, Y, Hu, X, Liu, H, Jiawei, Z, Li, Z, Yu, P.S. (2018) r-instance Learning for Missing People Tweets IdentificationParr, H., Stevenson, O., Woolnough, P. Search/ing for missing people: Families living with ambiguous absence (2016) Emotion, Space and Society, 19, pp. 66-75. Cited 23 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713880/description#description doi: 10.1016/j.emospa.2015.09.004Mannini, A., Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers (2010) Sensors, 10 (2), pp. 1154-1175. Cited 584 times. http://www.mdpi.com/1424-8220/10/2/1154/pdf doi: 10.3390/s100201154Berk, R.A., Sorenson, S.B., Barnes, G. Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions (2016) Journal of Empirical Legal Studies, 13 (1), pp. 94-115. Cited 73 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1740-1461 doi: 10.1111/jels.12098Cutajar, J.A., Formosa, S., Calafato, T. Community perceptions of criminality: The case of the Maltese walled city of Bormla (2013) Social Sciences, 2 (2), pp. 62-77. Cited 4 times. http://www.mdpi.com/2076-0760/2/2/62/pdf doi: 10.3390/socsci2020062Base de datos preliminar de personas reportadas como Desaparecidas Enero-Noviembre 2017 | Datos Abiertos Colombia (accedido oct. 07, 2020) https://www.datos.gov.co/Estad-sticas-Nacionales/Base-de-datos-preliminar-de-personas-reportadas-co/85g8-qemtBurrell, J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms (Open Access) (2016) Big Data and Society, 3 (1). Cited 949 times. journals.sagepub.com/home/bds doi: 10.1177/2053951715622512Kataria, A, Singh, MD. (2013) A Review of Data Classification Using K-Nearest Neighbour Algorithm. Cited 2 times.Therneau, T, Atkinson, B, Ripley, B. (2019) Recursive Partitioning and Regression Trees. Cited 135 times.Breiman, L. Random forests (Open Access) (2001) Machine Learning, 45 (1), pp. 5-32. Cited 69880 times. doi: 10.1023/A:1010933404324Franco, RMF, Giraldo, GCV. Identifying missing people in the National Database of Genetic Profiles for Application in Judicial Investigation —CODIS—: Two case reports (2015) Case Rep, 1 (2).Pan, L., Liu, G., Lin, F., Zhong, S., Xia, H., Sun, X., Liang, H. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia (Open Access) (2017) Scientific Reports, 7 (1), art. no. 7402. Cited 65 times. www.nature.com/srep/index.html doi: 10.1038/s41598-017-07408-0http://purl.org/coar/resource_type/c_6501ORIGINAL74-80.pdf74-80.pdfapplication/pdf159864https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/1/74-80.pdf9540faeeb16290b9737319dd3048bfbfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT74-80.pdf.txt74-80.pdf.txtExtracted texttext/plain23927https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/4/74-80.pdf.txta529a5e0fe77edf3fbbb43081cc487eaMD54THUMBNAIL74-80.pdf.jpg74-80.pdf.jpgGenerated Thumbnailimage/jpeg8741https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/5/74-80.pdf.jpg2af172b0306f35f9ad72e715adf6c53bMD5520.500.12585/12105oai:repositorio.utb.edu.co:20.500.12585/121052023-07-15 00:17:30.167Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |