A predictive model for the missing people problem

The disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, th...

Full description

Autores:
Delahoz-Domínguez, Enrique
Mendoza-Brand, Silvana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12105
Acceso en línea:
https://hdl.handle.net/20.500.12585/12105
Palabra clave:
Homicide;
Serial Killer;
Sexual
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_cd770a4d61cdc0bb1de90d86c992261d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12105
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A predictive model for the missing people problem
title A predictive model for the missing people problem
spellingShingle A predictive model for the missing people problem
Homicide;
Serial Killer;
Sexual
LEMB
title_short A predictive model for the missing people problem
title_full A predictive model for the missing people problem
title_fullStr A predictive model for the missing people problem
title_full_unstemmed A predictive model for the missing people problem
title_sort A predictive model for the missing people problem
dc.creator.fl_str_mv Delahoz-Domínguez, Enrique
Mendoza-Brand, Silvana
dc.contributor.author.none.fl_str_mv Delahoz-Domínguez, Enrique
Mendoza-Brand, Silvana
dc.subject.keywords.spa.fl_str_mv Homicide;
Serial Killer;
Sexual
topic Homicide;
Serial Killer;
Sexual
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, the police departments must develop a search task, in most cases with much uncertainty. In this research, a predictive model to predict missing people’s status is presented. The information used to create the model come from the Colombian legal Medicine Institute, in a public dataset composed of 6202 cases and 11 variables. The output variable was the final disappearance status, with the categories Appears Dead, Appears Alive, and Still Disappeared. Three supervised machine-learning algorithms were trained and tested for the model creation, K-Nearest Neighbours, Decision Trees, and Random Forest. The study was divided into three phases, first considering all the output categories. In the second phase, generating a binary classification for the Appeared and Not appeared instance. Thirdly, models were built to predict the status of appeared persons, Appears Alive or Appears Dead. The K-NN algorithm outperforms the other models with an Area under the curve value of 94.8%. © 2021 Romanian Society of Legal Medicine.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-14T13:52:49Z
dc.date.available.none.fl_str_mv 2023-07-14T13:52:49Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12105
dc.identifier.doi.none.fl_str_mv DOI:10.4323/rjlm.2021.74
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74
DOI:10.4323/rjlm.2021.74
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12105
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Romanian Journal of Legal MedicineVolume 29, Issue 1, Pages 74 - 80
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/1/74-80.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/4/74-80.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/5/74-80.pdf.jpg
bitstream.checksum.fl_str_mv 9540faeeb16290b9737319dd3048bfbf
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a529a5e0fe77edf3fbbb43081cc487ea
2af172b0306f35f9ad72e715adf6c53b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021614650523648
spelling Delahoz-Domínguez, Enrique140641a4-ba89-4a1d-bbcb-0c3f2d597b0dMendoza-Brand, Silvanac777fd9f-6010-4fe0-859c-d47e861f8fb62023-07-14T13:52:49Z2023-07-14T13:52:49Z20212023Dominguez, E. H., & Brand, S. M. (2021). A predictive model for the missing people problem. Romanian Journal of Legal Medicine, 29(1), 74–80. https://doi.org/10.4323/rjlm.2021.74https://hdl.handle.net/20.500.12585/12105DOI:10.4323/rjlm.2021.74Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe disappearance of people is a multidimensional phenomenon, in which several aspects must be considered. It affects people’s security perception and consumes police resources in its treatment. Therefore, does exists an emotional circumstance for the relatives of the missing person. At the same, the police departments must develop a search task, in most cases with much uncertainty. In this research, a predictive model to predict missing people’s status is presented. The information used to create the model come from the Colombian legal Medicine Institute, in a public dataset composed of 6202 cases and 11 variables. The output variable was the final disappearance status, with the categories Appears Dead, Appears Alive, and Still Disappeared. Three supervised machine-learning algorithms were trained and tested for the model creation, K-Nearest Neighbours, Decision Trees, and Random Forest. The study was divided into three phases, first considering all the output categories. In the second phase, generating a binary classification for the Appeared and Not appeared instance. Thirdly, models were built to predict the status of appeared persons, Appears Alive or Appears Dead. The K-NN algorithm outperforms the other models with an Area under the curve value of 94.8%. © 2021 Romanian Society of Legal Medicine.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Romanian Journal of Legal MedicineVolume 29, Issue 1, Pages 74 - 80A predictive model for the missing people probleminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Homicide;Serial Killer;SexualLEMBCartagena de IndiasBurch, RA. Presumed Dead: Why Arizona Should Shorten the Required Time for Beloved Missing Persons to Be Declared Legally Dead (2017) Ariz. Summit Law Rev, 10, p. 59. Cited 2 times.Yang, Y, Hu, X, Liu, H, Jiawei, Z, Li, Z, Yu, P.S. (2018) r-instance Learning for Missing People Tweets IdentificationParr, H., Stevenson, O., Woolnough, P. Search/ing for missing people: Families living with ambiguous absence (2016) Emotion, Space and Society, 19, pp. 66-75. Cited 23 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713880/description#description doi: 10.1016/j.emospa.2015.09.004Mannini, A., Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers (2010) Sensors, 10 (2), pp. 1154-1175. Cited 584 times. http://www.mdpi.com/1424-8220/10/2/1154/pdf doi: 10.3390/s100201154Berk, R.A., Sorenson, S.B., Barnes, G. Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions (2016) Journal of Empirical Legal Studies, 13 (1), pp. 94-115. Cited 73 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1740-1461 doi: 10.1111/jels.12098Cutajar, J.A., Formosa, S., Calafato, T. Community perceptions of criminality: The case of the Maltese walled city of Bormla (2013) Social Sciences, 2 (2), pp. 62-77. Cited 4 times. http://www.mdpi.com/2076-0760/2/2/62/pdf doi: 10.3390/socsci2020062Base de datos preliminar de personas reportadas como Desaparecidas Enero-Noviembre 2017 | Datos Abiertos Colombia (accedido oct. 07, 2020) https://www.datos.gov.co/Estad-sticas-Nacionales/Base-de-datos-preliminar-de-personas-reportadas-co/85g8-qemtBurrell, J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms (Open Access) (2016) Big Data and Society, 3 (1). Cited 949 times. journals.sagepub.com/home/bds doi: 10.1177/2053951715622512Kataria, A, Singh, MD. (2013) A Review of Data Classification Using K-Nearest Neighbour Algorithm. Cited 2 times.Therneau, T, Atkinson, B, Ripley, B. (2019) Recursive Partitioning and Regression Trees. Cited 135 times.Breiman, L. Random forests (Open Access) (2001) Machine Learning, 45 (1), pp. 5-32. Cited 69880 times. doi: 10.1023/A:1010933404324Franco, RMF, Giraldo, GCV. Identifying missing people in the National Database of Genetic Profiles for Application in Judicial Investigation —CODIS—: Two case reports (2015) Case Rep, 1 (2).Pan, L., Liu, G., Lin, F., Zhong, S., Xia, H., Sun, X., Liang, H. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia (Open Access) (2017) Scientific Reports, 7 (1), art. no. 7402. Cited 65 times. www.nature.com/srep/index.html doi: 10.1038/s41598-017-07408-0http://purl.org/coar/resource_type/c_6501ORIGINAL74-80.pdf74-80.pdfapplication/pdf159864https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/1/74-80.pdf9540faeeb16290b9737319dd3048bfbfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT74-80.pdf.txt74-80.pdf.txtExtracted texttext/plain23927https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/4/74-80.pdf.txta529a5e0fe77edf3fbbb43081cc487eaMD54THUMBNAIL74-80.pdf.jpg74-80.pdf.jpgGenerated Thumbnailimage/jpeg8741https://repositorio.utb.edu.co/bitstream/20.500.12585/12105/5/74-80.pdf.jpg2af172b0306f35f9ad72e715adf6c53bMD5520.500.12585/12105oai:repositorio.utb.edu.co:20.500.12585/121052023-07-15 00:17:30.167Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=