Recursive convex approximations for optimal power flow solution in direct current networks

The optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balanc...

Full description

Autores:
Ocampo-Toro, Jauder Alexander
Montoya, Oscar Danilo
Grisales-Norena, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12215
Acceso en línea:
https://hdl.handle.net/20.500.12585/12215
Palabra clave:
Approximation
Direct current networks
Metaheuristic optimization
Optimal power flow problem
Programming
Quadratic convex
Recursive convex
Techniques
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ca5352a85e9ff3479bedea9556072846
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12215
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Recursive convex approximations for optimal power flow solution in direct current networks
title Recursive convex approximations for optimal power flow solution in direct current networks
spellingShingle Recursive convex approximations for optimal power flow solution in direct current networks
Approximation
Direct current networks
Metaheuristic optimization
Optimal power flow problem
Programming
Quadratic convex
Recursive convex
Techniques
title_short Recursive convex approximations for optimal power flow solution in direct current networks
title_full Recursive convex approximations for optimal power flow solution in direct current networks
title_fullStr Recursive convex approximations for optimal power flow solution in direct current networks
title_full_unstemmed Recursive convex approximations for optimal power flow solution in direct current networks
title_sort Recursive convex approximations for optimal power flow solution in direct current networks
dc.creator.fl_str_mv Ocampo-Toro, Jauder Alexander
Montoya, Oscar Danilo
Grisales-Norena, Luis Fernando
dc.contributor.author.none.fl_str_mv Ocampo-Toro, Jauder Alexander
Montoya, Oscar Danilo
Grisales-Norena, Luis Fernando
dc.subject.keywords.spa.fl_str_mv Approximation
Direct current networks
Metaheuristic optimization
Optimal power flow problem
Programming
Quadratic convex
Recursive convex
Techniques
topic Approximation
Direct current networks
Metaheuristic optimization
Optimal power flow problem
Programming
Quadratic convex
Recursive convex
Techniques
description The optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balance constraint is approximated between affine equivalents. These models are recursively (iteratively) solved from the initial point vt equal to 1.0 pu with t equal to 0, until that the error between both consecutive voltage iterations reaches the desired convergence criteria. The main advantage of the proposed quadratic programming models is that the global optimum finding is ensured due to the convexity of the solution space around vt. Numerical results in the DC version of the IEEE 69-bus system demonstrate the effectiveness and robustness of both proposals when compared with classical metaheuristic approaches such as particle swarm and antlion optimizers, among others. All the numerical validations are carried out in the MATLAB programming environment version 2021b with the software for disciplined convex programming known as CVX tool in conjuction with the Gurobi solver version 9.0; while the metaheuristic optimizers are directly implemented in the MATLAB scripts.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-12
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:22:30Z
dc.date.available.none.fl_str_mv 2023-07-19T21:22:30Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Ocampo-Toro, J.A., Montoya, O.D., Grisales-Norena, L.F. Recursive convex approximations for optimal power flow solution in direct current networks (2022) International Journal of Electrical and Computer Engineering, 12 (6), pp. 5674-5682. DOI: 10.11591/ijece.v12i6.pp5674-5682
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12215
dc.identifier.doi.none.fl_str_mv 10.11591/ijece.v12i6.pp5674-5682
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Ocampo-Toro, J.A., Montoya, O.D., Grisales-Norena, L.F. Recursive convex approximations for optimal power flow solution in direct current networks (2022) International Journal of Electrical and Computer Engineering, 12 (6), pp. 5674-5682. DOI: 10.11591/ijece.v12i6.pp5674-5682
10.11591/ijece.v12i6.pp5674-5682
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12215
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv International Journal of Electrical and Computer Engineering - Vol. 12 No. 6 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/1/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/4/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/5/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.jpg
bitstream.checksum.fl_str_mv 7b1da87aa009b43864de72dbbcc5cffc
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a5a881d6d05eb1b3068e9aedc6982c21
927e39d52e89058a9dae27f21477bcf4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021679105441792
spelling Ocampo-Toro, Jauder Alexander9c64c41f-1bbf-4b40-9176-04c57560cd08Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Norena, Luis Fernando46211f56-02d8-4fd8-b13b-7dc04b35bd052023-07-19T21:22:30Z2023-07-19T21:22:30Z2022-08-122023-07Ocampo-Toro, J.A., Montoya, O.D., Grisales-Norena, L.F. Recursive convex approximations for optimal power flow solution in direct current networks (2022) International Journal of Electrical and Computer Engineering, 12 (6), pp. 5674-5682. DOI: 10.11591/ijece.v12i6.pp5674-5682https://hdl.handle.net/20.500.12585/1221510.11591/ijece.v12i6.pp5674-5682Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balance constraint is approximated between affine equivalents. These models are recursively (iteratively) solved from the initial point vt equal to 1.0 pu with t equal to 0, until that the error between both consecutive voltage iterations reaches the desired convergence criteria. The main advantage of the proposed quadratic programming models is that the global optimum finding is ensured due to the convexity of the solution space around vt. Numerical results in the DC version of the IEEE 69-bus system demonstrate the effectiveness and robustness of both proposals when compared with classical metaheuristic approaches such as particle swarm and antlion optimizers, among others. All the numerical validations are carried out in the MATLAB programming environment version 2021b with the software for disciplined convex programming known as CVX tool in conjuction with the Gurobi solver version 9.0; while the metaheuristic optimizers are directly implemented in the MATLAB scripts.9 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineering - Vol. 12 No. 6 (2022)Recursive convex approximations for optimal power flow solution in direct current networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1ApproximationDirect current networksMetaheuristic optimizationOptimal power flow problemProgrammingQuadratic convexRecursive convexTechniquesCartagena de IndiasArévalo, J., Santos, F., Rivera, S. Application of analytical uncertainty costs of solar, wind and electric vehicles in optimal power dispatch (in Spanish) (2017) Ingeniería, 22 (3), pp. 324-346. Cited 12 times. SepZhou, W., Sun, G. Computer Network Dynamic Balance Flow Distribution Based on Closed-Loop Particle Swarm Feedback Model (2021) Mathematical Problems in Engineering, 2021, art. no. 1772182. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2021/1772182Abdelbadea, M., Boghdady, T.A., Ibrahim, D.K. Enhancing active radial distribution networks by optimal sizing and placement of DGs using modified crow search algorithm (2019) Indonesian Journal of Electrical Engineering and Computer Science, 16 (3), pp. 1179-1188. Cited 17 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/19612/13154 doi: 10.11591/ijeecs.v16.i3.pp1179-1188Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Simpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537Wang, P., Goel, L., Liu, X., Choo, F.H. Harmonizing AC and DC: A Hybrid AC/DC future grid solution (Open Access) (2013) IEEE Power and Energy Magazine, 11 (3), art. no. 6506881, pp. 76-83. Cited 251 times. doi: 10.1109/MPE.2013.2245587Vanin, M., Ergun, H., D'hulst, R., Van Hertem, D. Comparison of Linear and Conic Power Flow Formulations for Unbalanced Low Voltage Network Optimization (Open Access) (2020) Electric Power Systems Research, 189, art. no. 106699. Cited 13 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106699Esteban, F.D., Serra, F.M., De Angelo, C.H. Control of a DC-DC dual active bridge converter in DC microgrids applications (Open Access) (2021) IEEE Latin America Transactions, 19 (8), art. no. 9475856, pp. 1261-1269. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2021.9475856Grisales-Noreña, L.F., Garzon-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., Rodriguez Cabal, M.A. Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks (2020) Transactions on Energy Systems and Engineering Applications, 1 (1), pp. 13-31. Cited 13 times. revistas.utb.edu.co/tesea/ doi: 10.32397/tesea.vol1.n1.2Ríos, S.J., Pagano, D.J., Lucas, K.E. Bidirectional power sharing for dc microgrid enabled by dual active bridge dc-dc converter (Open Access) (2021) Energies, 14 (2), art. no. 404. Cited 22 times. https://www.mdpi.com/1996-1073/14/2/404/pdf doi: 10.3390/en14020404Suyono, H., Hasanah, R.N., Mudjirahardjo, P., Fauzan Edy Purnomo, M., Uliyani, S., Musirin, I., Awalin, L.J. Enhancement of the power system distribution reliability using ant colony optimization and simulated annealing methods (Open Access) (2019) Indonesian Journal of Electrical Engineering and Computer Science, 17 (2), pp. 877-885. Cited 7 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/20665/13308 doi: 10.11591/ijeecs.v17.i2.pp877-885Lotfi, H., Khodaei, A. AC versus DC microgrid planning (2017) IEEE Transactions on Smart Grid, 8 (1), pp. 296-304. Cited 299 times. doi: 10.1109/TSG.2015.2457910Garzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022Hassan, S.K.A., Tuaimah, F.M. Optimal location of unified power flow controller genetic algorithm based (2020) International Journal of Power Electronics and Drive Systems, 11 (2), pp. 886-894. Cited 6 times. http://ijpeds.iaescore.com/index.php/IJPEDS/article/download/20472/13143 doi: 10.11591/ijpeds.v11.i2.pp886-894Rizk-Allah, R.M., El-Sehiemy, R.A., Wang, G.-G. A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution (Open Access) (2018) Applied Soft Computing Journal, 63, pp. 206-222. Cited 123 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2017.12.002Zou, D., Li, S., Wang, G.-G., Li, Z., Ouyang, H. An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects (Open Access) (2016) Applied Energy, 181, pp. 375-390. Cited 99 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2016.08.067Liu, X., Wang, X., Wen, J. Optimal power flow of DC-grid based on improved PSO algorithm (Open Access) (2017) Journal of Electrical Engineering and Technology, 12 (4), pp. 1586-1591. Cited 7 times. http://www.jeet.or.kr/ltkPSWeb/pub/pubfpfile.aspx?ppseq=1824 doi: 10.5370/JEET.2017.12.4.1586Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (Open Access) (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Rosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (Open Access) (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703Montoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (Open Access) (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348Marańda, W., De Mey, G., De Vos, A. Optimization of the master-slave inverter system for grid-connected photovoltaic plants (1998) Energy Conversion and Management, 39 (12), pp. 1239-1246. Cited 19 times. doi: 10.1016/S0196-8904(98)00012-0Noureddine, T., Djamel, L. Load flow analysis using newton raphson method in presence of distributed generation (Open Access) (2021) International Journal of Power Electronics and Drive Systems, 12 (1), pp. 489-498. Cited 5 times. http://ijpeds.iaescore.com/index.php/IJPEDS/article/view/20844/13369 doi: 10.11591/ijpeds.v12.i1.pp489-498Gallego-Pareja, L. A., Lopez-Lezama, J. M., Gomez-Carmona, O. Optimal placement of capacitors, voltage regulators, and distributed generators in electric power distribution systems (2020) Ingeniería, 25 (3), pp. 334-354. Cited 9 times. OctLavaei, J., Low, S.H. Zero duality gap in optimal power flow problem (Open Access) (2012) IEEE Transactions on Power Systems, 27 (1), art. no. 5971792, pp. 92-107. Cited 875 times. doi: 10.1109/TPWRS.2011.2160974Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Skolfield, J.K., Escobedo, A.R. Operations research in optimal power flow: A guide to recent and emerging methodologies and applications (2022) European Journal of Operational Research, 300 (2), pp. 387-404. Cited 15 times. https://www.journals.elsevier.com/european-journal-of-operational-research/ doi: 10.1016/j.ejor.2021.10.003Garces, A. A quadratic approximation for the optimal power flow in power distribution systems (Open Access) (2016) Electric Power Systems Research, 130, pp. 222-229. Cited 37 times. doi: 10.1016/j.epsr.2015.09.006Deng, L., Sun, H., Li, B., Sun, Y., Yang, T., Zhang, X. Optimal Operation of Integrated Heat and Electricity Systems: A Tightening McCormick Approach (Open Access) (2021) Engineering, 7 (8), pp. 1076-1086. Cited 15 times. http://www.journals.elsevier.com/engineering/ doi: 10.1016/j.eng.2021.06.006http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdfRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdfapplication/pdf1182634https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/1/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf7b1da87aa009b43864de72dbbcc5cffcMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.txtRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.txtExtracted texttext/plain36531https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/4/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.txta5a881d6d05eb1b3068e9aedc6982c21MD54THUMBNAILRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.jpgRecursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.jpgGenerated Thumbnailimage/jpeg6776https://repositorio.utb.edu.co/bitstream/20.500.12585/12215/5/Recursive-convex-approximations-for-optimal-power-flow-solution-in-direct-current-networksInternational-Journal-of-Electrical-and-Computer-Engineering.pdf.jpg927e39d52e89058a9dae27f21477bcf4MD5520.500.12585/12215oai:repositorio.utb.edu.co:20.500.12585/122152023-07-20 00:18:01.147Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=