Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks

This article addresses the problem of optimal phase-swapping in asymmetric distribution grids through the application of hurricane-based optimization algorithm (HOA). The exact mixedinteger nonlinear programming (MINLP) model is solved by using a master–slave optimization procedure. The master stage...

Full description

Autores:
Cruz-Reyes, Jose Luis
Salcedo-Marcelo, Sergio Steven
Montoya Giraldo, Oscar Danilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10686
Acceso en línea:
https://hdl.handle.net/20.500.12585/10686
https://doi.org/10.3390/computers11030043
Palabra clave:
Leveling power consumption per phase
Three-phase asymmetric distribution networks
Hurricane-based optimization algorithm
Matricial backward/forward power flow method
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ca3636d0e649c300103b64b34c3ba908
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10686
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
title Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
spellingShingle Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
Leveling power consumption per phase
Three-phase asymmetric distribution networks
Hurricane-based optimization algorithm
Matricial backward/forward power flow method
LEMB
title_short Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
title_full Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
title_fullStr Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
title_full_unstemmed Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
title_sort Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networks
dc.creator.fl_str_mv Cruz-Reyes, Jose Luis
Salcedo-Marcelo, Sergio Steven
Montoya Giraldo, Oscar Danilo
dc.contributor.author.none.fl_str_mv Cruz-Reyes, Jose Luis
Salcedo-Marcelo, Sergio Steven
Montoya Giraldo, Oscar Danilo
dc.subject.keywords.spa.fl_str_mv Leveling power consumption per phase
Three-phase asymmetric distribution networks
Hurricane-based optimization algorithm
Matricial backward/forward power flow method
topic Leveling power consumption per phase
Three-phase asymmetric distribution networks
Hurricane-based optimization algorithm
Matricial backward/forward power flow method
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This article addresses the problem of optimal phase-swapping in asymmetric distribution grids through the application of hurricane-based optimization algorithm (HOA). The exact mixedinteger nonlinear programming (MINLP) model is solved by using a master–slave optimization procedure. The master stage is entrusted with the definition of load connection at each stage by using an integer codification that ensures that, per node, only one from the possible six-load connections is assigned. In the slave stage, the load connection set provided by the master stage is applied with the backward/forward power flow method in its matricial form to determine the amount of grid power losses. The computational performance of the HOA was tested in three literature test feeders composed of 8, 25, and 37 nodes. Numerical results show the effectiveness of the proposed master–slave optimization approach when compared with the classical Chu and Beasley genetic algorithm (CBGA) and the discrete vortex search algorithm (DVSA). The reductions reached with HOA were 24.34 %, 4.16 %, and 19.25 % for the 8-, 28-, and 37-bus systems; this confirms the literature reports in the first two test feeders and improves the best current solution of the IEEE 37-bus grid. All simulations are carried out in the MATLAB programming environment.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-28T13:41:23Z
dc.date.available.none.fl_str_mv 2022-04-28T13:41:23Z
dc.date.issued.none.fl_str_mv 2022-03-14
dc.date.submitted.none.fl_str_mv 2022-04-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43. https://doi.org/10.3390/computers11030043
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10686
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/computers11030043
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43. https://doi.org/10.3390/computers11030043
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10686
https://doi.org/10.3390/computers11030043
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 25 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Computers 2022, 11, 43.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/1/computers-11-00043-v5.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/4/computers-11-00043-v5.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/5/computers-11-00043-v5.pdf.jpg
bitstream.checksum.fl_str_mv 1be42b26f60c16d60d73f782ef0f755b
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a9e35d26c465e9f06ca776ae973bf984
a77ffeebf3c7b3d84537868da60fdd9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021652484194304
spelling Cruz-Reyes, Jose Luis1279c63b-4438-4370-b268-88dc24571ebaSalcedo-Marcelo, Sergio Steven7b956347-fdcd-4c7f-9c71-c6036883071eMontoya Giraldo, Oscar Daniloc66dce06-2f1b-4a61-9631-60e8f37e84322022-04-28T13:41:23Z2022-04-28T13:41:23Z2022-03-142022-04-28Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43. https://doi.org/10.3390/computers11030043https://hdl.handle.net/20.500.12585/10686https://doi.org/10.3390/computers11030043Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis article addresses the problem of optimal phase-swapping in asymmetric distribution grids through the application of hurricane-based optimization algorithm (HOA). The exact mixedinteger nonlinear programming (MINLP) model is solved by using a master–slave optimization procedure. The master stage is entrusted with the definition of load connection at each stage by using an integer codification that ensures that, per node, only one from the possible six-load connections is assigned. In the slave stage, the load connection set provided by the master stage is applied with the backward/forward power flow method in its matricial form to determine the amount of grid power losses. The computational performance of the HOA was tested in three literature test feeders composed of 8, 25, and 37 nodes. Numerical results show the effectiveness of the proposed master–slave optimization approach when compared with the classical Chu and Beasley genetic algorithm (CBGA) and the discrete vortex search algorithm (DVSA). The reductions reached with HOA were 24.34 %, 4.16 %, and 19.25 % for the 8-, 28-, and 37-bus systems; this confirms the literature reports in the first two test feeders and improves the best current solution of the IEEE 37-bus grid. All simulations are carried out in the MATLAB programming environment.25 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers 2022, 11, 43.Application of the hurricane-based optimization algorithm to the phase-balancing problem in three-phase asymmetric networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Leveling power consumption per phaseThree-phase asymmetric distribution networksHurricane-based optimization algorithmMatricial backward/forward power flow methodLEMBCartagena de IndiasInvestigadoresCravioto, J.; Ohgaki, H.; Che, H.S.; Tan, C.; Kobayashi, S.; Toe, H.; Long, B.; Oudaya, E.; Rahim, N.A.; Farzeneh, H. The Effects of Rural Electrification on Quality of Life: A Southeast Asian Perspective. Energies 2020, 13, 2410Dhivya, S.; Arul, R. Demand Side Management Studies on Distributed Energy Resources: A Survey. Trans. Energy Syst. Eng. Appl. 2021, 2, 17–31.Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Hincapié, R.A.; Granada, M. Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation 2021, 9, 67Soltani, S.; Rashidinejad, M.; Abdollahi, A. Dynamic phase balancing in the smart distribution networks. Int. J. Electr. Power Energy Syst. 2017, 93, 374–383.Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Álvarez-Arroyo, C. An Improved Crow Search Algorithm Applied to the Phase Swapping Problem in Asymmetric Distribution Systems. Symmetry 2021, 13, 1329Blasco, P.A.; Montoya-Mira, R.; Diez, J.M.; Montoya, R.; Reig, M.J. Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Appl. Sci. 2019, 10, 113.Granada-Echeverri, M.; Gallego-Rendón, R.A.; López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140.CREG. Resolucion 025 de 1995—Codigo de Redes; Technical Report; CREG: Bogotá, Colombia, 1995Wu, J.; Liu, M.; Lu, W.; Xie, K. Real-time optimization of active distribution networks with distributed energy resources participating in frequency regulation. J. Clean. Prod. 2021, 328, 129597.Zhu, J.; Chow, M.Y.; Zhang, F. Phase balancing using mixed-integer programming [distribution feeders]. IEEE Trans. Power Syst. 1998, 13, 1487–1492.Zhu, J.; Bilbro, G.; Chow, M.Y. Phase balancing using simulated annealing. IEEE Trans. Power Syst. 1999, 14, 1508–1513.Chen, T.H.; Cherng, J.T. Optimal phase arrangement of distribution transformers connected to a primary feeder for system unbalance improvement and loss reduction using a genetic algorithm. In Proceedings of the 21st International Conference on Power Industry Computer Applications, Connecting Utilities, PICA 99, to the Millennium and Beyond (Cat. No.99CH36351), Santa Clara, CA, USA, 21–21 May 1999 ; IEEE: Piscataway, NJ, USA, 1999.Gandomkar, M. Phase balancing using genetic algorithm. In Proceedings of the 39th International Universities Power Engineering Conference, Bristol, UK, 6–8 September 2004; IEEE: Piscataway, NJ, USA , 2004; Volume 1, pp. 377–379.Lin, C.; Chen, C.; Chuang, H.; Ho, C. Heuristic Rule-Based Phase Balancing of Distribution Systems by Considering Customer Load Patterns. IEEE Trans. Power Syst. 2005, 20, 709–716Garcés-Ruiz, A.; Granada-Echeverri, M.; Rendon-Gallego, R.A. Phase-Balancing using ant colony optimization (In Spanish). Ingeniería Compet. 2011, 7, 43–52Tuppadung, Y.; Kurutach, W. The Modified Particle Swarm Optimization for Phase Balancing. In Proceedings of the TENCON 2006—2006 IEEE Region 10 Conference, Hong Kong, China , 14–17 November 2006; IEEE: Piscataway, NJ, USA, 2006Lin, C.H.; Chen, C.S.; Chuang, H.J.; Huang, M.Y.; Huang, C.W. An Expert System for Three-Phase Balancing of Distribution Feeders. IEEE Trans. Power Syst. 2008, 23, 1488–1496.Huang, M.Y.; Chen, C.S.; Lin, C.H.; Kang, M.S.; Chuang, H.J.; Huang, C.W. Three-phase balancing of distribution feeders using immune algorithm. IET Gener. Transm. Distrib. 2008, 2, 383.Kuo, C.C.; Chao, Y.T. Energy management based on AM/FM/GIS for phase balancing application on distribution systems. Energy Convers. Manag. 2010, 51, 485–492Sathiskumar, M.; kumar, A.N.; Thiruvenkadam, S. Phase Balancing of Unbalanced Distribution Network through hybrid Greedy-Fuzzy Algorithm. Int. J. Comput. Appl. 2011, 34, 38–45.Sathiskumar, M.; kumar, A.N.; Lakshminarasimman, L.; Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2012, 42, 91–97Hooshmand, R.A.; Soltani, S. Fuzzy Optimal Phase Balancing of Radial and Meshed Distribution Networks Using BF-PSO Algorithm. IEEE Trans. Power Syst. 2012, 27, 47–57.Grigoras, G.; Gavrilas, M. Phase swapping of lateral branches from low-voltage distribution networks for load balancing. In Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 20–22 October 2016; IEEE: Piscataway, NJ, USA, 2016Swapna, M.; Udaykumar, R.Y. An algorithm for optimal phase balancing of secondary distribution systems at each node. In Proceedings of the 2016 IEEE PES 13th International Conference on Transmission Distribution Construction, Operation Live-Line Maintenance (ESMO), Columbus, OH, USA, 12–15 September 2016; pp. 1–5.Toma, N.; Ivanov, O.; Neagu, B.; Gavrila, M. A PSO Algorithm for Phase Load Balancing in Low Voltage Distribution Networks. In Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 0857–0862. [Handhal, F.K.; Rashid, A.T. Load balancing in distribution system using heuristic search algorithm. In Proceedings of the 2018 International Conference on Advance of Sustainable Engineering and its Application (ICASEA), Wasit, Iraq, 14–15 March 2018; pp. 48–53Rios, M.A.; Castaño, J.C.; Garcés, A.; Molina-Cabrera, A. Phase Balancing in Power Distribution Systems: A heuristic approach based on group-theory. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6.Gangwar, P.; Singh, S.N.; Chakrabarti, S. An Analytical Approach for Phase Balancing Considering Customer Load Profile. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5.Ivanov, O.; Neagu, B.C.; Gavrilas, M.; Grigoras, G.; Sfintes, C.V. Phase Load Balancing in Low Voltage Distribution Networks Using Metaheuristic Algorithms. In Proceedings of the 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), Craiova, Romania, 9–11 October 2019; pp. 1–6Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972.Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.Anzola, D.; Castro, J.; Giral, D. Simulation tool for classical optimal flow analysis using Lagrange multipliers (In Spanish). Trans. Energy Syst. Eng. Appl. 2021, 2, 1–16.Montoya, O.D.; Alarcon-Villamil, J.A.; Hernández, J.C. Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses. Energies 2021, 14, 4535.Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109Bruno, S.; Lamonaca, S.; Rotondo, G.; Stecchi, U.; Scala, M.L. Unbalanced Three-Phase Optimal Power Flow for Smart Grids. IEEE Trans. Ind. Electron. 2011, 58, 4504–4513.Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124.Rbouh, I.; El Imrani, A.A. Hurricane Search algorithm a new model for function optimization. In Proceedings of the 2014 5th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 1–3 April 2014; pp. 1–5.Arteaga, J.A.; Montoya, O.D.; Grisales-Noreña, L.F. Solution of the optimal power flow problem in direct current grids applying the hurricane optimization algorithm. J. Phys. Conf. Ser. 2020, 1448, 012015.El-Sehiemy, R.A.; Rizk-Allah, R.M.; Attia, A.F. Assessment of hurricane versus sine-cosine optimization algorithms for economic/ecological emissions load dispatch problem. Int. Trans. Electr. Energy Syst. 2018, 29, e2716Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G.G. A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl. Soft Comput. 2018, 63, 206–222.Montoya, O.D.; Gil-González, W.; Giral, D.A. On the Matricial Formulation of Iterative Sweep Power Flow for Radial and Meshed Distribution Networks with Guarantee of Convergence. Appl. Sci. 2020, 10, 5802Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511.Elsaiah, S.; Benidris, M.; Mitra, J. A three-phase power flow solution method for unbalanced distribution networks. In Proceedings of the 2011 North American Power Symposium, Boston, MA, USA, 4–6 August 2011; pp. 1–8Broadwater, R.P.; Chandrasekaran, A.; Huddleston, C.T.; Khan, A.H. Power flow analysis of unbalanced multiphase radial distribution systems. Electr. Power Syst. Res. 1988, 14, 23–33.Ramana, T.; Ganesh, V.; Sivanagaraju, S. Distributed Generator Placement And Sizing in Unbalanced Radial Distribution System. Cogener. Distrib. Gener. J. 2010, 25, 52–71.Singh, D.; Misra, R.K.; Mishra, S. Distribution system feeder re-phasing considering voltage-dependency of loads. Int. J. Electr. Power Energy Syst. 2016, 76, 107–119.Kersting, W. Radial distribution test feeders. IEEE Trans. Power Syst. 1991, 6, 975–985.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALcomputers-11-00043-v5.pdfcomputers-11-00043-v5.pdfapplication/pdf445280https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/1/computers-11-00043-v5.pdf1be42b26f60c16d60d73f782ef0f755bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTcomputers-11-00043-v5.pdf.txtcomputers-11-00043-v5.pdf.txtExtracted texttext/plain72336https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/4/computers-11-00043-v5.pdf.txta9e35d26c465e9f06ca776ae973bf984MD54THUMBNAILcomputers-11-00043-v5.pdf.jpgcomputers-11-00043-v5.pdf.jpgGenerated Thumbnailimage/jpeg95336https://repositorio.utb.edu.co/bitstream/20.500.12585/10686/5/computers-11-00043-v5.pdf.jpga77ffeebf3c7b3d84537868da60fdd9eMD5520.500.12585/10686oai:repositorio.utb.edu.co:20.500.12585/106862022-04-29 00:17:56.297Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=