A machine learning model for emotion recognition from physiological signals

Emotions are affective states related to physiological responses. This study proposes a model for recognition of three emotions: amusement, sadness, and neutral from physiological signals with the purpose of developing a reliable methodology for emotion recognition using wearable devices. Target emo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8721
Acceso en línea:
https://hdl.handle.net/20.500.12585/8721
Palabra clave:
Affective computing
Biosignal processing
Emotion recognition
Machine learning
Physiological signals
Decision trees
Electrophysiology
Feature extraction
Learning systems
Machine learning
Physiological models
Speech recognition
Statistical tests
Support vector machines
Time domain analysis
Affective computing
Bio-signal processing
Emotion recognition
Frequency and time domains
Machine learning models
Physiological response
Physiological signals
Random forest-recursive feature eliminations
Biomedical signal processing
Adult
Article
Clinical article
Electrodermal response
Feature selection
Female
Heart rate
Human
Human experiment
Male
Photoelectric plethysmography
Random forest
Recursive feature elimination
Sadness
Support vector machine
Videorecording
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ca00dcb788106febe951854e8fcfd3dc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8721
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A machine learning model for emotion recognition from physiological signals
title A machine learning model for emotion recognition from physiological signals
spellingShingle A machine learning model for emotion recognition from physiological signals
Affective computing
Biosignal processing
Emotion recognition
Machine learning
Physiological signals
Decision trees
Electrophysiology
Feature extraction
Learning systems
Machine learning
Physiological models
Speech recognition
Statistical tests
Support vector machines
Time domain analysis
Affective computing
Bio-signal processing
Emotion recognition
Frequency and time domains
Machine learning models
Physiological response
Physiological signals
Random forest-recursive feature eliminations
Biomedical signal processing
Adult
Article
Clinical article
Electrodermal response
Feature selection
Female
Heart rate
Human
Human experiment
Male
Photoelectric plethysmography
Random forest
Recursive feature elimination
Sadness
Support vector machine
Videorecording
title_short A machine learning model for emotion recognition from physiological signals
title_full A machine learning model for emotion recognition from physiological signals
title_fullStr A machine learning model for emotion recognition from physiological signals
title_full_unstemmed A machine learning model for emotion recognition from physiological signals
title_sort A machine learning model for emotion recognition from physiological signals
dc.subject.keywords.none.fl_str_mv Affective computing
Biosignal processing
Emotion recognition
Machine learning
Physiological signals
Decision trees
Electrophysiology
Feature extraction
Learning systems
Machine learning
Physiological models
Speech recognition
Statistical tests
Support vector machines
Time domain analysis
Affective computing
Bio-signal processing
Emotion recognition
Frequency and time domains
Machine learning models
Physiological response
Physiological signals
Random forest-recursive feature eliminations
Biomedical signal processing
Adult
Article
Clinical article
Electrodermal response
Feature selection
Female
Heart rate
Human
Human experiment
Male
Photoelectric plethysmography
Random forest
Recursive feature elimination
Sadness
Support vector machine
Videorecording
topic Affective computing
Biosignal processing
Emotion recognition
Machine learning
Physiological signals
Decision trees
Electrophysiology
Feature extraction
Learning systems
Machine learning
Physiological models
Speech recognition
Statistical tests
Support vector machines
Time domain analysis
Affective computing
Bio-signal processing
Emotion recognition
Frequency and time domains
Machine learning models
Physiological response
Physiological signals
Random forest-recursive feature eliminations
Biomedical signal processing
Adult
Article
Clinical article
Electrodermal response
Feature selection
Female
Heart rate
Human
Human experiment
Male
Photoelectric plethysmography
Random forest
Recursive feature elimination
Sadness
Support vector machine
Videorecording
description Emotions are affective states related to physiological responses. This study proposes a model for recognition of three emotions: amusement, sadness, and neutral from physiological signals with the purpose of developing a reliable methodology for emotion recognition using wearable devices. Target emotions were elicited in 37 volunteers using video clips while two biosignals were recorded: photoplethysmography, which provides information about heart rate, and galvanic skin response. These signals were analyzed in frequency and time domains to obtain a set of features. Several feature selection techniques and classifiers were evaluated. The best model was obtained with random forest recursive feature elimination, for feature selection, and a support vector machine for classification. The results show that it is possible to detect amusement, sadness, and neutral emotions using only galvanic skin response features. The system was able to recognize the three target emotions with accuracy up to 100% when evaluated on the test data set. © 2019 Elsevier Ltd
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:08Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:08Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Biomedical Signal Processing and Control; Vol. 55
dc.identifier.issn.none.fl_str_mv 1746-8094
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8721
dc.identifier.doi.none.fl_str_mv 10.1016/j.bspc.2019.101646
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Biomedical Signal Processing and Control; Vol. 55
1746-8094
10.1016/j.bspc.2019.101646
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8721
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85071578602&doi=10.1016%2fj.bspc.2019.101646&partnerID=40&md5=63d872ed4ecb63c81664f7c8671b3758
Scopus 56682770100
Scopus 57205565967
Scopus 57210951365
Scopus 57204201834
Scopus 57210822856
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/1/doi_org10_1016j_bspc_2019_101646.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/4/doi_org10_1016j_bspc_2019_101646.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/5/doi_org10_1016j_bspc_2019_101646.pdf.jpg
bitstream.checksum.fl_str_mv eead44d342094fa8963d2254a8639793
259b834de15782e019d066ef505cd2e6
783e4cbba0ca745f9b42a17f58b1b700
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021741874249728
spelling 2019-11-06T19:05:08Z2019-11-06T19:05:08Z2020Biomedical Signal Processing and Control; Vol. 551746-8094https://hdl.handle.net/20.500.12585/872110.1016/j.bspc.2019.101646Universidad Tecnológica de BolívarRepositorio UTBEmotions are affective states related to physiological responses. This study proposes a model for recognition of three emotions: amusement, sadness, and neutral from physiological signals with the purpose of developing a reliable methodology for emotion recognition using wearable devices. Target emotions were elicited in 37 volunteers using video clips while two biosignals were recorded: photoplethysmography, which provides information about heart rate, and galvanic skin response. These signals were analyzed in frequency and time domains to obtain a set of features. Several feature selection techniques and classifiers were evaluated. The best model was obtained with random forest recursive feature elimination, for feature selection, and a support vector machine for classification. The results show that it is possible to detect amusement, sadness, and neutral emotions using only galvanic skin response features. The system was able to recognize the three target emotions with accuracy up to 100% when evaluated on the test data set. © 2019 Elsevier LtdRecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85071578602&doi=10.1016%2fj.bspc.2019.101646&partnerID=40&md5=63d872ed4ecb63c81664f7c8671b3758Scopus 56682770100Scopus 57205565967Scopus 57210951365Scopus 57204201834Scopus 57210822856A machine learning model for emotion recognition from physiological signalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Affective computingBiosignal processingEmotion recognitionMachine learningPhysiological signalsDecision treesElectrophysiologyFeature extractionLearning systemsMachine learningPhysiological modelsSpeech recognitionStatistical testsSupport vector machinesTime domain analysisAffective computingBio-signal processingEmotion recognitionFrequency and time domainsMachine learning modelsPhysiological responsePhysiological signalsRandom forest-recursive feature eliminationsBiomedical signal processingAdultArticleClinical articleElectrodermal responseFeature selectionFemaleHeart rateHumanHuman experimentMalePhotoelectric plethysmographyRandom forestRecursive feature eliminationSadnessSupport vector machineVideorecordingDomínguez-Jiménez, J.A.Campo Landines, KiaraMartínez-Santos, J.C.De la Hoz Domínguez, Enrique JoséContreras Ortiz, Sonia HelenaEkman, P., An argument for basic emotions (1992) Cogn. Emot., 6 (3-4), pp. 169-200Scherer, K.R., Ekman, P., Approaches to Emotion (1984), Psychology PressLang, P.J., The emotion probe: studies of motivation and attention (1995) Am. Psychol., 50 (5), p. 372Russell, J.A., A circumplex model of affect (1980) J. Pers. Soc. Psychol., 39 (6), p. 1161James, W., What is an emotion? (1884) Mind, 9 (34), pp. 188-205Tato, R., Santos, R., Kompe, R., Pardo, J.M., Emotional space improves emotion recognition (2002) Seventh International Conference on Spoken Language ProcessingCowie, R., Cornelius, R.R., Describing the emotional states that are expressed in speech (2003) Speech Commun., 40 (1-2), pp. 5-32Turk, M.A., Pentland, A.P., Face recognition using eigenfaces (1991) IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91, IEEE, pp. 586-591Atkinson, A.P., Tunstall, M.L., Dittrich, W.H., Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures (2007) Cognition, 104 (1), pp. 59-72Heraz, A., Clynes, M., Recognition of emotions conveyed by touch through force-sensitive screens: observational study of humans and machine learning techniques (2018) JMIR Mental Health, 5 (3)Sebe, N., Cohen, I., Huang, T.S., Multimodal emotion recognition (2005) Handbook of Pattern Recognition and Computer Vision, pp. 387-409. , World ScientificSoleymani, M., Pantic, M., Pun, T., Multimodal emotion recognition in response to videos (2012) IEEE Trans. Affect. Comput., 3 (2), pp. 211-223Alaoui-Ismaïli, O., Robin, O., Rada, H., Dittmar, A., Vernet-Maury, E., Basic emotions evoked by odorants: comparison between autonomic responses and self-evaluation (1997) Physiol. Behav., 62 (4), pp. 713-720Levenson, R.W., Carstensen, L.L., Friesen, W.V., Ekman, P., Emotion, physiology, and expression in old age (1991) Psychol. Aging, 6 (1), p. 28Christie, I.C., Friedman, B.H., Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach (2004) Int. J. Psychophysiol., 51 (2), pp. 143-153Picard, R.W., Healey, J., Affective wearables (1997) Pers. Technol., 1 (4), pp. 231-240Scheirer, J., Fernandez, R., Picard, R.W., Expression glasses: a wearable device for facial expression recognition (1999) CHI'99 Extended Abstracts on Human Factors in Computing Systems, ACM, pp. 262-263Haag, A., Goronzy, S., Schaich, P., Williams, J., Emotion recognition using bio-sensors: first steps towards an automatic system (2004) Tutorial and Research Workshop on Affective Dialogue Systems, Springer, pp. 36-48Hui, T., Sherratt, R., Coverage of emotion recognition for common wearable biosensors (2018) Biosensors, 8 (2), p. 30Bailon, C., Damas, M., Pomares, H., Sanabria, D., Perakakis, P., Goicoechea, C., Banos, O., Intelligent monitoring of affective factors underlying sport performance by means of wearable and mobile technology (2018) Proceedings, 2 (19), p. 1202Popat, K.A., Sharma, P., Wearable computer applications a future perspective (2013) Int. J. Eng. Innov. Technol., 3 (1), pp. 213-217Jhajharia, S., Pal, S., Verma, S., Wearable computing and its application (2014) Int. J. Comput. Sci. Inform. Technol., 5 (4), pp. 5700-5704Jeong, I.C., Bychkov, D., Searson, P., Wearable devices for precision medicine and health state monitoring (2018) IEEE Trans. Biomed. Eng., p. 1Gouizi, K., Bereksi Reguig, F., Maaoui, C., Emotion recognition from physiological signals (2011) J. Med. Eng. Technol., 35 (6-7), pp. 300-307Udovičić, G., erek, J., Russo, M., Sikora, M., Wearable emotion recognition system based on GSR and PPG signals (2017) Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care, ACM, pp. 53-59Liu, M., Fan, D., Zhang, X., Gong, X., Human emotion recognition based on galvanic skin response signal feature selection and SVM (2016) 2016 International Conference on Smart City and Systems Engineering (ICSCSE), pp. 157-160. , IEEE Hunan, ChinaAyata, D., Yaslan, Y., Kamasak, M.E., Emotion based music recommendation system using wearable physiological sensors (2018) IEEE Trans. Consumer Electron., 64 (2), pp. 196-203Balasubramanian, G., Kanagasabai, A., Mohan, J., Seshadri, N.G., Music induced emotion using wavelet packet decomposition – An EEG study (2018) Biomed. Signal Process. Control, 42, pp. 115-128Domínguez-Jiménez, J., Campo-Landines, K., Martínez-Santos, J., Contreras-Ortiz, S., Emotion detection through biomedical signals: a pilot study (2018) 14th International Symposium on Medical Information Processing and Analysis, vol. 10975, International Society for Optics and Photonics, p. 1097506Schaefer, A., Nils, F., Sanchez, X., Philippot, P., Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers (2010) Cogn. Emot., 24 (7), pp. 1153-1172Collet, C., Vernet-Maury, E., Delhomme, G., Dittmar, A., Autonomic nervous system response patterns specificity to basic emotions (1997) J. Auton. Nerv. Syst., 62 (1-2), pp. 45-57McCleary, R.A., The nature of the galvanic skin response (1950) Psychol. Bull., 47 (2), p. 97Mundy-Castle, A., McKiever, B., The psychophysiological significance of the galvanic skin response (1953) J. Exp. Psychol., 46 (1), p. 15Lang, P.J., Bradley, M.M., Cuthbert, B.N., A motivational analysis of emotion: reflex–cortex connections (1992) Psychol. Sci., 3 (1), pp. 44-49Bradley, M.M., Lang, P.J., Affective reactions to acoustic stimuli (2000) Psychophysiology, 37 (2), pp. 204-215Appelhans, B.M., Luecken, L.J., Heart rate variability as an index of regulated emotional responding (2006) Rev. Gen. Psychol., 10 (3), p. 229Ayata, D.D., Yaslan, Y., Kamaşak, M., Emotion recognition via galvanic skin response: Comparison of machine learning algorithms and feature extraction methods (2017) Istanbul Univ.-J. Electr. Electron. Eng., 17 (1), pp. 3147-3156Chen, H.-K., Hu, Y.-F., Lin, S.-F., Methodological considerations in calculating heart rate variability based on wearable device heart rate samples (2018) Comput. Biol. Med., 102, pp. 396-401Shaffer, F., Ginsberg, J., An overview of heart rate variability metrics and norms (2017) Front. Public Health, 5, p. 258von Rosenberg, W., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., Mandic, D.P., Resolving ambiguities in the lf/hf ratio: lf-hf scatter plots for the categorization of mental and physical stress from hrv (2017) Front. Physiol., 8, p. 360Tsai, C.-F., Feature selection in bankruptcy prediction (2009) Knowl.-Based Syst., 22 (2), pp. 120-127Niu, X., Chen, L., Chen, Q., Research on genetic algorithm based on emotion recognition using physiological signals (2011) 2011 International Conference on Computational Problem-Solving (ICCP), IEEE, pp. 614-618Zvarevashe, K., Olugbara, O.O., Gender voice recognition using random forest recursive feature elimination with gradient boosting machines (2018) 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), IEEE, pp. 1-6Gen, M., Cheng, R., (2000) Genetic Algorithms and Engineering Optimization, 7. , John Wiley & SonsGoldberg, D.E., Holland, J.H., Genetic algorithms and machine learning (1988) Mach. Learn., 3 (2), pp. 95-99Miguel, F.K., Psicologia das emoç oes: uma proposta integrativa para compreender a express ao emocional (2015) Psico-usf, 20 (1), pp. 153-162Reeve, J., Understanding Motivation and Emotion (1993), p. 13Ekman, P., Friesen, W.V., The repertoire of nonverbal behavior: Categories, origins, usage, and coding (1969) Semiotica, 1 (1), pp. 49-98Akosa, J., Predictive accuracy: a misleading performance measure for highly imbalanced data (2017) Proceedings of the SAS Global ForumSun, Y., Wong, A.K., Kamel, M.S., Classification of imbalanced data: a review (2009) Int. J. Pattern Recogn. Artif. Intell., 23 (4), pp. 687-719http://purl.org/coar/resource_type/c_6501ORIGINALdoi_org10_1016j_bspc_2019_101646.pdfapplication/pdf6863610https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/1/doi_org10_1016j_bspc_2019_101646.pdfeead44d342094fa8963d2254a8639793MD51TEXTdoi_org10_1016j_bspc_2019_101646.pdf.txtdoi_org10_1016j_bspc_2019_101646.pdf.txtExtracted texttext/plain99https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/4/doi_org10_1016j_bspc_2019_101646.pdf.txt259b834de15782e019d066ef505cd2e6MD54THUMBNAILdoi_org10_1016j_bspc_2019_101646.pdf.jpgdoi_org10_1016j_bspc_2019_101646.pdf.jpgGenerated Thumbnailimage/jpeg117472https://repositorio.utb.edu.co/bitstream/20.500.12585/8721/5/doi_org10_1016j_bspc_2019_101646.pdf.jpg783e4cbba0ca745f9b42a17f58b1b700MD5520.500.12585/8721oai:repositorio.utb.edu.co:20.500.12585/87212023-05-25 16:53:30.893Repositorio Institucional UTBrepositorioutb@utb.edu.co