Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage

The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9194
Acceso en línea:
https://hdl.handle.net/20.500.12585/9194
Palabra clave:
Computational fluid dynamics (CFD)
Emptying process
Entrapped air simulation
Experimental set-up
Realizable k-ϵ turbulence model
Sub-atmospheric pressure
Volume of fluid (VOF) multiphase model
Air
Atmospheric pressure
Phase interfaces
Pipelines
Turbulence models
Air water interfaces
Entrapped airs
Experimental set up
Main parameters
Multiphase model
Pressure variations
Subatmospheric pressures
Worst case scenario
Computational fluid dynamics
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c96ee278eccc9c60aed110713b52ff0d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9194
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
title Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
spellingShingle Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
Computational fluid dynamics (CFD)
Emptying process
Entrapped air simulation
Experimental set-up
Realizable k-ϵ turbulence model
Sub-atmospheric pressure
Volume of fluid (VOF) multiphase model
Air
Atmospheric pressure
Phase interfaces
Pipelines
Turbulence models
Air water interfaces
Entrapped airs
Experimental set up
Main parameters
Multiphase model
Pressure variations
Subatmospheric pressures
Worst case scenario
Computational fluid dynamics
title_short Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
title_full Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
title_fullStr Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
title_full_unstemmed Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
title_sort Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
dc.subject.keywords.none.fl_str_mv Computational fluid dynamics (CFD)
Emptying process
Entrapped air simulation
Experimental set-up
Realizable k-ϵ turbulence model
Sub-atmospheric pressure
Volume of fluid (VOF) multiphase model
Air
Atmospheric pressure
Phase interfaces
Pipelines
Turbulence models
Air water interfaces
Entrapped airs
Experimental set up
Main parameters
Multiphase model
Pressure variations
Subatmospheric pressures
Worst case scenario
Computational fluid dynamics
topic Computational fluid dynamics (CFD)
Emptying process
Entrapped air simulation
Experimental set-up
Realizable k-ϵ turbulence model
Sub-atmospheric pressure
Volume of fluid (VOF) multiphase model
Air
Atmospheric pressure
Phase interfaces
Pipelines
Turbulence models
Air water interfaces
Entrapped airs
Experimental set up
Main parameters
Multiphase model
Pressure variations
Subatmospheric pressures
Worst case scenario
Computational fluid dynamics
description The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline. © 2019, © 2019 International Association for Hydro-Environment Engineering and Research.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:11Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:11Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.none.fl_str_mv Artículo
dc.identifier.citation.none.fl_str_mv Journal of Hydraulic Research
dc.identifier.issn.none.fl_str_mv 00221686
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9194
dc.identifier.doi.none.fl_str_mv 10.1080/00221686.2019.1625819
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205420202
57193337460
56074282700
57193113023
35568240000
identifier_str_mv Journal of Hydraulic Research
00221686
10.1080/00221686.2019.1625819
Universidad Tecnológica de Bolívar
Repositorio UTB
57205420202
57193337460
56074282700
57193113023
35568240000
url https://hdl.handle.net/20.500.12585/9194
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis Ltd.
publisher.none.fl_str_mv Taylor and Francis Ltd.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070825545&doi=10.1080%2f00221686.2019.1625819&partnerID=40&md5=6c756541c15489351a8b6c9a8c43999f
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9194/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021726329110528
spelling 2020-03-26T16:33:11Z2020-03-26T16:33:11Z2019Journal of Hydraulic Research00221686https://hdl.handle.net/20.500.12585/919410.1080/00221686.2019.1625819Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline. © 2019, © 2019 International Association for Hydro-Environment Engineering and Research.The authors want to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from Interreg Atlantic Area Programme 2014–2020 for the support on the extended knowledge of some members. Also, the authors acknowledge the hydraulic lab of Universitat Politècnica de València in Spain for providing the experimental facility.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070825545&doi=10.1080%2f00221686.2019.1625819&partnerID=40&md5=6c756541c15489351a8b6c9a8c43999fComputational fluid dynamics for sub-atmospheric pressure analysis in pipe drainageinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Computational fluid dynamics (CFD)Emptying processEntrapped air simulationExperimental set-upRealizable k-ϵ turbulence modelSub-atmospheric pressureVolume of fluid (VOF) multiphase modelAirAtmospheric pressurePhase interfacesPipelinesTurbulence modelsAir water interfacesEntrapped airsExperimental set upMain parametersMultiphase modelPressure variationsSubatmospheric pressuresWorst case scenarioComputational fluid dynamicsBesharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.(2001) Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves, , 1st. Denver, Colorado: AWWAAnderson, J.D., (1995) Computational fluid dynamics, , New York: McGraw-Hill Book Co https://www.ansys.com/academic/free-student-products, ANSYS, Canonsburg, PA,. Retrieved fromApollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water, 8 (1), p. 25Benjamin, T.B., Gravity currents and related phenomena (1968) Journal of Fluid Mechanics, 31 (2), pp. 209-248Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply Resources Technology-AQUA, 65 (2), pp. 116-126Besharat, M., Viseu, M.T., Ramos, H.M., Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence (2017) Water, 9 (1), p. 63Collins, R.P., Boxall, J.B., Karney, B.W., Brunone, B., Meniconi, S., How severe can transients be after a sudden depressurization? (2012) Journal of American Water Works Association, 104 (4), pp. E243-E251Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9 (2), pp. 1-15Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4), p. 06018004Ding, H., Visser, F.C., Jiang, Y., Furmanczyk, M., Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications (2011) Journal of Fluids Engineering, 133 (1), p. 011101Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2017) Journal of Hydraulic Research, 57 (3), pp. 318-326Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P., García-Serra, J., Pipeline start-up with entrapped air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., van’t Westende, J.M.C., Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. , …Liu, D.Y., Zhou, L., Numerical simulation of transient flow in pressurized water pipeline with trapped air mass (2009) Paper presented at the Asia-Pacific Power and Energy Engineering Conference, IEEE Power and Energy Society, pp. 104-107. , New YorkMartinoia, T., Barreto, C.V., da Rocha, J.C.D.C., Lavoura, J., Henriques, F.M.P., Simulation and planning of pipeline emptying operations (2012) Paper presented at the Proceeding of the 9th International Pipeline Conference, ASME, IPC2012-90432, pp. 603-611Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C., Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) Journal of Pressure Vessel Technology, 138 (3), p. 031301Trindade, B.C., Vasconcelos, J.G., Modeling of water pipeline filling events accounting for air phase interactions (2013) Journal of Hydraulic Engineering, 139 (9), pp. 921-934Vasconcelos, J.G., Wright, S.J., Rapid flow startup in filled horizontal pipelines (2008) Journal of Hydraulic Engineering, 134 (7), pp. 984-992Wang, L., Wang, F., Karney, B., Malekpour, A., Numerical investigation of rapid filling in bypass pipelines (2017) Journal of Hydraulic Research, 55 (5), pp. 647-656Zhou, L., Liu, D., Experimental investigation of entrapped air pocket in a partially full water pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Karney, B., Zhang, Q., Influence of entrapped air pockets on hydraulic transients in water pipelines (2011) Journal of Hydraulic Engineering, 137 (12), pp. 1686-1692Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140Zukoski, E.E., Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes (1966) Journal of Fluid Mechanics, 25 (4), pp. 821-837http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9194/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9194oai:repositorio.utb.edu.co:20.500.12585/91942023-05-26 09:44:09.756Repositorio Institucional UTBrepositorioutb@utb.edu.co