Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage
The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9194
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9194
- Palabra clave:
- Computational fluid dynamics (CFD)
Emptying process
Entrapped air simulation
Experimental set-up
Realizable k-ϵ turbulence model
Sub-atmospheric pressure
Volume of fluid (VOF) multiphase model
Air
Atmospheric pressure
Phase interfaces
Pipelines
Turbulence models
Air water interfaces
Entrapped airs
Experimental set up
Main parameters
Multiphase model
Pressure variations
Subatmospheric pressures
Worst case scenario
Computational fluid dynamics
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_c96ee278eccc9c60aed110713b52ff0d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9194 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
title |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
spellingShingle |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage Computational fluid dynamics (CFD) Emptying process Entrapped air simulation Experimental set-up Realizable k-ϵ turbulence model Sub-atmospheric pressure Volume of fluid (VOF) multiphase model Air Atmospheric pressure Phase interfaces Pipelines Turbulence models Air water interfaces Entrapped airs Experimental set up Main parameters Multiphase model Pressure variations Subatmospheric pressures Worst case scenario Computational fluid dynamics |
title_short |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
title_full |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
title_fullStr |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
title_full_unstemmed |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
title_sort |
Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage |
dc.subject.keywords.none.fl_str_mv |
Computational fluid dynamics (CFD) Emptying process Entrapped air simulation Experimental set-up Realizable k-ϵ turbulence model Sub-atmospheric pressure Volume of fluid (VOF) multiphase model Air Atmospheric pressure Phase interfaces Pipelines Turbulence models Air water interfaces Entrapped airs Experimental set up Main parameters Multiphase model Pressure variations Subatmospheric pressures Worst case scenario Computational fluid dynamics |
topic |
Computational fluid dynamics (CFD) Emptying process Entrapped air simulation Experimental set-up Realizable k-ϵ turbulence model Sub-atmospheric pressure Volume of fluid (VOF) multiphase model Air Atmospheric pressure Phase interfaces Pipelines Turbulence models Air water interfaces Entrapped airs Experimental set up Main parameters Multiphase model Pressure variations Subatmospheric pressures Worst case scenario Computational fluid dynamics |
description |
The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline. © 2019, © 2019 International Association for Hydro-Environment Engineering and Research. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:11Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:11Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.none.fl_str_mv |
Artículo |
dc.identifier.citation.none.fl_str_mv |
Journal of Hydraulic Research |
dc.identifier.issn.none.fl_str_mv |
00221686 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9194 |
dc.identifier.doi.none.fl_str_mv |
10.1080/00221686.2019.1625819 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57205420202 57193337460 56074282700 57193113023 35568240000 |
identifier_str_mv |
Journal of Hydraulic Research 00221686 10.1080/00221686.2019.1625819 Universidad Tecnológica de Bolívar Repositorio UTB 57205420202 57193337460 56074282700 57193113023 35568240000 |
url |
https://hdl.handle.net/20.500.12585/9194 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070825545&doi=10.1080%2f00221686.2019.1625819&partnerID=40&md5=6c756541c15489351a8b6c9a8c43999f |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9194/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021726329110528 |
spelling |
2020-03-26T16:33:11Z2020-03-26T16:33:11Z2019Journal of Hydraulic Research00221686https://hdl.handle.net/20.500.12585/919410.1080/00221686.2019.1625819Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline. © 2019, © 2019 International Association for Hydro-Environment Engineering and Research.The authors want to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from Interreg Atlantic Area Programme 2014–2020 for the support on the extended knowledge of some members. Also, the authors acknowledge the hydraulic lab of Universitat Politècnica de València in Spain for providing the experimental facility.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070825545&doi=10.1080%2f00221686.2019.1625819&partnerID=40&md5=6c756541c15489351a8b6c9a8c43999fComputational fluid dynamics for sub-atmospheric pressure analysis in pipe drainageinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Computational fluid dynamics (CFD)Emptying processEntrapped air simulationExperimental set-upRealizable k-ϵ turbulence modelSub-atmospheric pressureVolume of fluid (VOF) multiphase modelAirAtmospheric pressurePhase interfacesPipelinesTurbulence modelsAir water interfacesEntrapped airsExperimental set upMain parametersMultiphase modelPressure variationsSubatmospheric pressuresWorst case scenarioComputational fluid dynamicsBesharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.(2001) Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves, , 1st. Denver, Colorado: AWWAAnderson, J.D., (1995) Computational fluid dynamics, , New York: McGraw-Hill Book Co https://www.ansys.com/academic/free-student-products, ANSYS, Canonsburg, PA,. Retrieved fromApollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water, 8 (1), p. 25Benjamin, T.B., Gravity currents and related phenomena (1968) Journal of Fluid Mechanics, 31 (2), pp. 209-248Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702Besharat, M., Tarinejad, R., Ramos, H.M., The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply Resources Technology-AQUA, 65 (2), pp. 116-126Besharat, M., Viseu, M.T., Ramos, H.M., Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence (2017) Water, 9 (1), p. 63Collins, R.P., Boxall, J.B., Karney, B.W., Brunone, B., Meniconi, S., How severe can transients be after a sudden depressurization? (2012) Journal of American Water Works Association, 104 (4), pp. E243-E251Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water, 9 (2), pp. 1-15Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4), p. 06018004Ding, H., Visser, F.C., Jiang, Y., Furmanczyk, M., Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications (2011) Journal of Fluids Engineering, 133 (1), p. 011101Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient phenomena during the emptying process of a single pipe with water-air interaction (2017) Journal of Hydraulic Research, 57 (3), pp. 318-326Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P., García-Serra, J., Pipeline start-up with entrapped air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., van’t Westende, J.M.C., Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. , …Liu, D.Y., Zhou, L., Numerical simulation of transient flow in pressurized water pipeline with trapped air mass (2009) Paper presented at the Asia-Pacific Power and Energy Engineering Conference, IEEE Power and Energy Society, pp. 104-107. , New YorkMartinoia, T., Barreto, C.V., da Rocha, J.C.D.C., Lavoura, J., Henriques, F.M.P., Simulation and planning of pipeline emptying operations (2012) Paper presented at the Proceeding of the 9th International Pipeline Conference, ASME, IPC2012-90432, pp. 603-611Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C., Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) Journal of Pressure Vessel Technology, 138 (3), p. 031301Trindade, B.C., Vasconcelos, J.G., Modeling of water pipeline filling events accounting for air phase interactions (2013) Journal of Hydraulic Engineering, 139 (9), pp. 921-934Vasconcelos, J.G., Wright, S.J., Rapid flow startup in filled horizontal pipelines (2008) Journal of Hydraulic Engineering, 134 (7), pp. 984-992Wang, L., Wang, F., Karney, B., Malekpour, A., Numerical investigation of rapid filling in bypass pipelines (2017) Journal of Hydraulic Research, 55 (5), pp. 647-656Zhou, L., Liu, D., Experimental investigation of entrapped air pocket in a partially full water pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Karney, B., Zhang, Q., Influence of entrapped air pockets on hydraulic transients in water pipelines (2011) Journal of Hydraulic Engineering, 137 (12), pp. 1686-1692Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140Zukoski, E.E., Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes (1966) Journal of Fluid Mechanics, 25 (4), pp. 821-837http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9194/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9194oai:repositorio.utb.edu.co:20.500.12585/91942023-05-26 09:44:09.756Repositorio Institucional UTBrepositorioutb@utb.edu.co |