Through-glass interposer integrated high quality RF components

High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated pa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9063
Acceso en línea:
https://hdl.handle.net/20.500.12585/9063
Palabra clave:
Bandpass filters
Bandwidth
Glass
Microwave circuits
Optical resonators
Resonators
Substrates
Surface micromachining
Waveguides
Bandpass filter (BPFs)
Complementary split-ring resonator
Electrical conductivity
Evanescent wave amplification
External quality factor
Half-mode substrate integrated waveguides
Interconnection layers
Waveguiding structures
Substrate integrated waveguides
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c88cc2413a7911b77795594d76b8fbcc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9063
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Through-glass interposer integrated high quality RF components
title Through-glass interposer integrated high quality RF components
spellingShingle Through-glass interposer integrated high quality RF components
Bandpass filters
Bandwidth
Glass
Microwave circuits
Optical resonators
Resonators
Substrates
Surface micromachining
Waveguides
Bandpass filter (BPFs)
Complementary split-ring resonator
Electrical conductivity
Evanescent wave amplification
External quality factor
Half-mode substrate integrated waveguides
Interconnection layers
Waveguiding structures
Substrate integrated waveguides
title_short Through-glass interposer integrated high quality RF components
title_full Through-glass interposer integrated high quality RF components
title_fullStr Through-glass interposer integrated high quality RF components
title_full_unstemmed Through-glass interposer integrated high quality RF components
title_sort Through-glass interposer integrated high quality RF components
dc.subject.keywords.none.fl_str_mv Bandpass filters
Bandwidth
Glass
Microwave circuits
Optical resonators
Resonators
Substrates
Surface micromachining
Waveguides
Bandpass filter (BPFs)
Complementary split-ring resonator
Electrical conductivity
Evanescent wave amplification
External quality factor
Half-mode substrate integrated waveguides
Interconnection layers
Waveguiding structures
Substrate integrated waveguides
topic Bandpass filters
Bandwidth
Glass
Microwave circuits
Optical resonators
Resonators
Substrates
Surface micromachining
Waveguides
Bandpass filter (BPFs)
Complementary split-ring resonator
Electrical conductivity
Evanescent wave amplification
External quality factor
Half-mode substrate integrated waveguides
Interconnection layers
Waveguiding structures
Substrate integrated waveguides
description High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated passive RF components. Compared with the silicon interposer approach, which suffers from large electrical conductivity and therefore substrate loss, the glass interposer has advantages of low substrate loss, allowing high quality interconnection and passive circuits, and low material and manufacturing costs. Corning fusion glass is selected as the substrate to realize the compact CSRR-loaded HMSIW resonators and bandpass filters (BPFs) working under the principle of evanescent wave amplification. Two and three pole bandpass filters are designed for broadband operation at 5.8 GHz. Thru glass vias (TGVs) are used to define the side-wall of the substrate integrated waveguiding structure. Surface micromachining techniques are used to fabricate the proposed devices. The variations of the external quality factor (Qe) of the resonator and the internal coupling coefficient (M) of the coupled resonators are studied for filter design. Operation of the filters at 5.8 GHz with a fractional bandwidth (FBW) of more than 10% for an in-band return loss of better than 20 dB and an low insertion loss of less than 1.35 dB has been obtained, which is not feasible with a usual Si interposer approach. Measurement results are presented from 2 to 10 GHz and show good agreement with simulated ones. © 2014 IEEE.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:52Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:52Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings - Electronic Components and Technology Conference; pp. 1103-1109
dc.identifier.isbn.none.fl_str_mv 9781479924073
dc.identifier.issn.none.fl_str_mv 05695503
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9063
dc.identifier.doi.none.fl_str_mv 10.1109/ECTC.2014.6897427
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56021218700
36698427600
6601969625
56382312300
55670976200
7402126778
identifier_str_mv Proceedings - Electronic Components and Technology Conference; pp. 1103-1109
9781479924073
05695503
10.1109/ECTC.2014.6897427
Universidad Tecnológica de Bolívar
Repositorio UTB
56021218700
36698427600
6601969625
56382312300
55670976200
7402126778
url https://hdl.handle.net/20.500.12585/9063
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 27 May 2014 through 30 May 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907893946&doi=10.1109%2fECTC.2014.6897427&partnerID=40&md5=959d65fd4b1421e1ee83128bbb024cbb
Scopus2-s2.0-84907893946
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 64th Electronic Components and Technology Conference, ECTC 2014
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9063/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021648480731136
spelling 2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014Proceedings - Electronic Components and Technology Conference; pp. 1103-1109978147992407305695503https://hdl.handle.net/20.500.12585/906310.1109/ECTC.2014.6897427Universidad Tecnológica de BolívarRepositorio UTB5602121870036698427600660196962556382312300556709762007402126778High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated passive RF components. Compared with the silicon interposer approach, which suffers from large electrical conductivity and therefore substrate loss, the glass interposer has advantages of low substrate loss, allowing high quality interconnection and passive circuits, and low material and manufacturing costs. Corning fusion glass is selected as the substrate to realize the compact CSRR-loaded HMSIW resonators and bandpass filters (BPFs) working under the principle of evanescent wave amplification. Two and three pole bandpass filters are designed for broadband operation at 5.8 GHz. Thru glass vias (TGVs) are used to define the side-wall of the substrate integrated waveguiding structure. Surface micromachining techniques are used to fabricate the proposed devices. The variations of the external quality factor (Qe) of the resonator and the internal coupling coefficient (M) of the coupled resonators are studied for filter design. Operation of the filters at 5.8 GHz with a fractional bandwidth (FBW) of more than 10% for an in-band return loss of better than 20 dB and an low insertion loss of less than 1.35 dB has been obtained, which is not feasible with a usual Si interposer approach. Measurement results are presented from 2 to 10 GHz and show good agreement with simulated ones. © 2014 IEEE.IEEE Components, Packaging, and Manufacturing Technology Society (CPMT)Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907893946&doi=10.1109%2fECTC.2014.6897427&partnerID=40&md5=959d65fd4b1421e1ee83128bbb024cbbScopus2-s2.0-8490789394664th Electronic Components and Technology Conference, ECTC 2014Through-glass interposer integrated high quality RF componentsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBandpass filtersBandwidthGlassMicrowave circuitsOptical resonatorsResonatorsSubstratesSurface micromachiningWaveguidesBandpass filter (BPFs)Complementary split-ring resonatorElectrical conductivityEvanescent wave amplificationExternal quality factorHalf-mode substrate integrated waveguidesInterconnection layersWaveguiding structuresSubstrate integrated waveguides27 May 2014 through 30 May 2014Kim C.Senior D.E.Shorey A.Kim H.J.Thomas W.Yoon, Y.K.Shorey, A., Pollard, S., Streltsov, A., Piech, G., Wagner, R., Development of substrates featuring through glass vias (TGV) for 3D-IC integration (2012) 61st Electron. Compon. Technol. Conf. (ECTC), , San Diego, CA, May 29-June 1Sukumaran, V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, R., Design, fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL, May 31-June 3Topper, M., Ndip, I., Erxleben, R., Brusberg, L., Nissen, N., Schroder, H., Yamamoto, H., Reichl, H., 3-D thin film interposer based on TGV (through glass vias): An alternative to si-interposer (2010) 60th Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, June 1-4Kim, C., Yoon, Y.-K., High frequency characterization and analytical modeling of through glass via (TGV) for 3D thin-film interposer and MEMS packaging (2013) The 63rd Electron. Compon. Technol. Conf. (ECTC) 2013, , Las Vegas, Nevada, USA, May 28 - May 31Teo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μW wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE J. of Solid-state Circuits, 45 (11), p. 2292. , 2299, NovAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Int. Con. on Design & Techno. of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 MarchBoria, V.E., Gimeno, B., Waveguide filters for satellites (2007) IEEE Microw. Mag., 8 (5), pp. 60-70. , OctoberHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, , New York: Wiley, ch. 8Hao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microw. Mag., 11 (4), pp. 56-68Wu, Z., Shim, Y., Rais-Zadeh, M., Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology (2012) IEEE Trans. Microw. Theory and Tech., 60 (3), pp. 518-527. , MarchHsiao, C.-Y., Hsu, S.S.H., Chang, D.-C., A compact V-band bandpass filter in IPD technology (2011) IEEE Microw. Wireless Compon. Lett, 21 (10), pp. 531-533. , OctWu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Telecommunications in Modern Satellite Cable and Broadcasting Service Conf., 1, p. PIIIIX. , OctShen, W., Yin, W.-Y., Sun, X.-W., Wu, L.-S., Substrate-integrated waveguide bandpass filters with planar resonators for system-on-package (2013) IEEE Trans. Comp., Packaging and Manufacturing Tech., 3 (2), pp. 253-261. , FebChin, K.S., Chang, C.-C., Chen, C.-H., Guo, Z., Wang, D., Che, W.W., LTCC multilayered substrate-integrated waveguide filter with enhanced frequency selectivity for system-in-package applications (2014) IEEE Trans. Comp., Packaging and Manufacturing Tech., PP (99), p. 1Chen, X.-P., Wu, K., Substrate integrated waveguide cross-coupled filter with negative coupling structure (2008) IEEE Trans. Microw. Theory and Tech., 56 (1), pp. 142-149. , JanChen, X.-P., Wu, K., Self-packaged millimeter-wave substrate integrated waveguide filter with asymmetric frequency response (2012) IEEE Trans. Comp., Packaging and Manufacturing Tech., 2 (5), pp. 775-782. , MayLamy, Y.P.R., Jinesh, K.B., Roozeboom, F., Gravesteijn, D.J., Besling, W.F.A., RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration (2010) IEEE Trans. Advanced Packaging, 33 (4), pp. 1072-1079. , NovWang, Y., Hong, W., Dong, Y., Liu, B., Tang, H.J., Chen, J., Yin, X., Wu, K., Half mode substrate integrated waveguide (HMSIW) bandpass filter (2007) IEEE Microw. Wireless Compon. Lett., 17 (4), pp. 265-267. , AprilZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Sym., pp. 95-98. , JanFalcone, F., Lopetegi, T., Baena, J.D., Marques, R., Martin, F., Sorolla, M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators (2004) IEEE Microw. Wireless Compon. Lett., 14 (14), pp. 280-282. , JuneDong, Y.D., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech., 57 (9), pp. 2211-2222. , SepSenior, D.E., Cheng, X., Machado, M., Yoon, Y.-K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) 2010 IEEE Antenna Propagation Symposium, , Toronto, Canada, JulySenior, D.E., Cheng, X., Yoon, Y.-K., Electrically tunable evanescent mode half-mode substrate-integrated-waveguide resonators (2012) IEEE Microw. and Wireless Components Lett., 22 (3), pp. 123-125. , MarchPozar, D.M., (2005) Microwave Engineering, , 3rd ed. New York, Wiley & SonsWang, B.K., Chen, Y.-A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf., , Taipei, Thailand, 24-26 Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9063/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9063oai:repositorio.utb.edu.co:20.500.12585/90632023-04-24 08:52:49.615Repositorio Institucional UTBrepositorioutb@utb.edu.co