Through-glass interposer integrated high quality RF components
High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated pa...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9063
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9063
- Palabra clave:
- Bandpass filters
Bandwidth
Glass
Microwave circuits
Optical resonators
Resonators
Substrates
Surface micromachining
Waveguides
Bandpass filter (BPFs)
Complementary split-ring resonator
Electrical conductivity
Evanescent wave amplification
External quality factor
Half-mode substrate integrated waveguides
Interconnection layers
Waveguiding structures
Substrate integrated waveguides
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_c88cc2413a7911b77795594d76b8fbcc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9063 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Through-glass interposer integrated high quality RF components |
title |
Through-glass interposer integrated high quality RF components |
spellingShingle |
Through-glass interposer integrated high quality RF components Bandpass filters Bandwidth Glass Microwave circuits Optical resonators Resonators Substrates Surface micromachining Waveguides Bandpass filter (BPFs) Complementary split-ring resonator Electrical conductivity Evanescent wave amplification External quality factor Half-mode substrate integrated waveguides Interconnection layers Waveguiding structures Substrate integrated waveguides |
title_short |
Through-glass interposer integrated high quality RF components |
title_full |
Through-glass interposer integrated high quality RF components |
title_fullStr |
Through-glass interposer integrated high quality RF components |
title_full_unstemmed |
Through-glass interposer integrated high quality RF components |
title_sort |
Through-glass interposer integrated high quality RF components |
dc.subject.keywords.none.fl_str_mv |
Bandpass filters Bandwidth Glass Microwave circuits Optical resonators Resonators Substrates Surface micromachining Waveguides Bandpass filter (BPFs) Complementary split-ring resonator Electrical conductivity Evanescent wave amplification External quality factor Half-mode substrate integrated waveguides Interconnection layers Waveguiding structures Substrate integrated waveguides |
topic |
Bandpass filters Bandwidth Glass Microwave circuits Optical resonators Resonators Substrates Surface micromachining Waveguides Bandpass filter (BPFs) Complementary split-ring resonator Electrical conductivity Evanescent wave amplification External quality factor Half-mode substrate integrated waveguides Interconnection layers Waveguiding structures Substrate integrated waveguides |
description |
High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated passive RF components. Compared with the silicon interposer approach, which suffers from large electrical conductivity and therefore substrate loss, the glass interposer has advantages of low substrate loss, allowing high quality interconnection and passive circuits, and low material and manufacturing costs. Corning fusion glass is selected as the substrate to realize the compact CSRR-loaded HMSIW resonators and bandpass filters (BPFs) working under the principle of evanescent wave amplification. Two and three pole bandpass filters are designed for broadband operation at 5.8 GHz. Thru glass vias (TGVs) are used to define the side-wall of the substrate integrated waveguiding structure. Surface micromachining techniques are used to fabricate the proposed devices. The variations of the external quality factor (Qe) of the resonator and the internal coupling coefficient (M) of the coupled resonators are studied for filter design. Operation of the filters at 5.8 GHz with a fractional bandwidth (FBW) of more than 10% for an in-band return loss of better than 20 dB and an low insertion loss of less than 1.35 dB has been obtained, which is not feasible with a usual Si interposer approach. Measurement results are presented from 2 to 10 GHz and show good agreement with simulated ones. © 2014 IEEE. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings - Electronic Components and Technology Conference; pp. 1103-1109 |
dc.identifier.isbn.none.fl_str_mv |
9781479924073 |
dc.identifier.issn.none.fl_str_mv |
05695503 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9063 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ECTC.2014.6897427 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56021218700 36698427600 6601969625 56382312300 55670976200 7402126778 |
identifier_str_mv |
Proceedings - Electronic Components and Technology Conference; pp. 1103-1109 9781479924073 05695503 10.1109/ECTC.2014.6897427 Universidad Tecnológica de Bolívar Repositorio UTB 56021218700 36698427600 6601969625 56382312300 55670976200 7402126778 |
url |
https://hdl.handle.net/20.500.12585/9063 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
27 May 2014 through 30 May 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907893946&doi=10.1109%2fECTC.2014.6897427&partnerID=40&md5=959d65fd4b1421e1ee83128bbb024cbb Scopus2-s2.0-84907893946 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
64th Electronic Components and Technology Conference, ECTC 2014 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9063/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021648480731136 |
spelling |
2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014Proceedings - Electronic Components and Technology Conference; pp. 1103-1109978147992407305695503https://hdl.handle.net/20.500.12585/906310.1109/ECTC.2014.6897427Universidad Tecnológica de BolívarRepositorio UTB5602121870036698427600660196962556382312300556709762007402126778High quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated passive RF components. Compared with the silicon interposer approach, which suffers from large electrical conductivity and therefore substrate loss, the glass interposer has advantages of low substrate loss, allowing high quality interconnection and passive circuits, and low material and manufacturing costs. Corning fusion glass is selected as the substrate to realize the compact CSRR-loaded HMSIW resonators and bandpass filters (BPFs) working under the principle of evanescent wave amplification. Two and three pole bandpass filters are designed for broadband operation at 5.8 GHz. Thru glass vias (TGVs) are used to define the side-wall of the substrate integrated waveguiding structure. Surface micromachining techniques are used to fabricate the proposed devices. The variations of the external quality factor (Qe) of the resonator and the internal coupling coefficient (M) of the coupled resonators are studied for filter design. Operation of the filters at 5.8 GHz with a fractional bandwidth (FBW) of more than 10% for an in-band return loss of better than 20 dB and an low insertion loss of less than 1.35 dB has been obtained, which is not feasible with a usual Si interposer approach. Measurement results are presented from 2 to 10 GHz and show good agreement with simulated ones. © 2014 IEEE.IEEE Components, Packaging, and Manufacturing Technology Society (CPMT)Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907893946&doi=10.1109%2fECTC.2014.6897427&partnerID=40&md5=959d65fd4b1421e1ee83128bbb024cbbScopus2-s2.0-8490789394664th Electronic Components and Technology Conference, ECTC 2014Through-glass interposer integrated high quality RF componentsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBandpass filtersBandwidthGlassMicrowave circuitsOptical resonatorsResonatorsSubstratesSurface micromachiningWaveguidesBandpass filter (BPFs)Complementary split-ring resonatorElectrical conductivityEvanescent wave amplificationExternal quality factorHalf-mode substrate integrated waveguidesInterconnection layersWaveguiding structuresSubstrate integrated waveguides27 May 2014 through 30 May 2014Kim C.Senior D.E.Shorey A.Kim H.J.Thomas W.Yoon, Y.K.Shorey, A., Pollard, S., Streltsov, A., Piech, G., Wagner, R., Development of substrates featuring through glass vias (TGV) for 3D-IC integration (2012) 61st Electron. Compon. Technol. Conf. (ECTC), , San Diego, CA, May 29-June 1Sukumaran, V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, R., Design, fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL, May 31-June 3Topper, M., Ndip, I., Erxleben, R., Brusberg, L., Nissen, N., Schroder, H., Yamamoto, H., Reichl, H., 3-D thin film interposer based on TGV (through glass vias): An alternative to si-interposer (2010) 60th Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, June 1-4Kim, C., Yoon, Y.-K., High frequency characterization and analytical modeling of through glass via (TGV) for 3D thin-film interposer and MEMS packaging (2013) The 63rd Electron. Compon. Technol. Conf. (ECTC) 2013, , Las Vegas, Nevada, USA, May 28 - May 31Teo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μW wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE J. of Solid-state Circuits, 45 (11), p. 2292. , 2299, NovAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Int. Con. on Design & Techno. of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 MarchBoria, V.E., Gimeno, B., Waveguide filters for satellites (2007) IEEE Microw. Mag., 8 (5), pp. 60-70. , OctoberHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, , New York: Wiley, ch. 8Hao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microw. Mag., 11 (4), pp. 56-68Wu, Z., Shim, Y., Rais-Zadeh, M., Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology (2012) IEEE Trans. Microw. Theory and Tech., 60 (3), pp. 518-527. , MarchHsiao, C.-Y., Hsu, S.S.H., Chang, D.-C., A compact V-band bandpass filter in IPD technology (2011) IEEE Microw. Wireless Compon. Lett, 21 (10), pp. 531-533. , OctWu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Telecommunications in Modern Satellite Cable and Broadcasting Service Conf., 1, p. PIIIIX. , OctShen, W., Yin, W.-Y., Sun, X.-W., Wu, L.-S., Substrate-integrated waveguide bandpass filters with planar resonators for system-on-package (2013) IEEE Trans. Comp., Packaging and Manufacturing Tech., 3 (2), pp. 253-261. , FebChin, K.S., Chang, C.-C., Chen, C.-H., Guo, Z., Wang, D., Che, W.W., LTCC multilayered substrate-integrated waveguide filter with enhanced frequency selectivity for system-in-package applications (2014) IEEE Trans. Comp., Packaging and Manufacturing Tech., PP (99), p. 1Chen, X.-P., Wu, K., Substrate integrated waveguide cross-coupled filter with negative coupling structure (2008) IEEE Trans. Microw. Theory and Tech., 56 (1), pp. 142-149. , JanChen, X.-P., Wu, K., Self-packaged millimeter-wave substrate integrated waveguide filter with asymmetric frequency response (2012) IEEE Trans. Comp., Packaging and Manufacturing Tech., 2 (5), pp. 775-782. , MayLamy, Y.P.R., Jinesh, K.B., Roozeboom, F., Gravesteijn, D.J., Besling, W.F.A., RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration (2010) IEEE Trans. Advanced Packaging, 33 (4), pp. 1072-1079. , NovWang, Y., Hong, W., Dong, Y., Liu, B., Tang, H.J., Chen, J., Yin, X., Wu, K., Half mode substrate integrated waveguide (HMSIW) bandpass filter (2007) IEEE Microw. Wireless Compon. Lett., 17 (4), pp. 265-267. , AprilZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Sym., pp. 95-98. , JanFalcone, F., Lopetegi, T., Baena, J.D., Marques, R., Martin, F., Sorolla, M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators (2004) IEEE Microw. Wireless Compon. Lett., 14 (14), pp. 280-282. , JuneDong, Y.D., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech., 57 (9), pp. 2211-2222. , SepSenior, D.E., Cheng, X., Machado, M., Yoon, Y.-K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) 2010 IEEE Antenna Propagation Symposium, , Toronto, Canada, JulySenior, D.E., Cheng, X., Yoon, Y.-K., Electrically tunable evanescent mode half-mode substrate-integrated-waveguide resonators (2012) IEEE Microw. and Wireless Components Lett., 22 (3), pp. 123-125. , MarchPozar, D.M., (2005) Microwave Engineering, , 3rd ed. New York, Wiley & SonsWang, B.K., Chen, Y.-A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf., , Taipei, Thailand, 24-26 Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9063/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9063oai:repositorio.utb.edu.co:20.500.12585/90632023-04-24 08:52:49.615Repositorio Institucional UTBrepositorioutb@utb.edu.co |