An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs

: The problem of optimal siting and sizing of distribution static compensators (STATCOMs) is addressed in this research from the point of view of exact mathematical optimization. The exact mixed-integer nonlinear programming model (MINLP) is decoupled into two convex optimization sub-problems, named...

Full description

Autores:
Montoya, Oscar Danilo
Alvarado-Barrios, Lázaro
Hernández, Jesus C.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10624
Acceso en línea:
https://hdl.handle.net/20.500.12585/10624
https://doi.org/10.3390/electronics10243102
Palabra clave:
Mixed-integer quadratic relaxation
Second-order cone programming reformulation
Decoupled solution methodology
Location problem
Sizing problem
Distribution static compensators
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c5e8a45065f644ce3a2ab67aec9bd5c0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10624
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
title An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
spellingShingle An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
Mixed-integer quadratic relaxation
Second-order cone programming reformulation
Decoupled solution methodology
Location problem
Sizing problem
Distribution static compensators
title_short An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
title_full An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
title_fullStr An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
title_full_unstemmed An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
title_sort An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMs
dc.creator.fl_str_mv Montoya, Oscar Danilo
Alvarado-Barrios, Lázaro
Hernández, Jesus C.
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Alvarado-Barrios, Lázaro
Hernández, Jesus C.
dc.subject.keywords.spa.fl_str_mv Mixed-integer quadratic relaxation
Second-order cone programming reformulation
Decoupled solution methodology
Location problem
Sizing problem
Distribution static compensators
topic Mixed-integer quadratic relaxation
Second-order cone programming reformulation
Decoupled solution methodology
Location problem
Sizing problem
Distribution static compensators
description : The problem of optimal siting and sizing of distribution static compensators (STATCOMs) is addressed in this research from the point of view of exact mathematical optimization. The exact mixed-integer nonlinear programming model (MINLP) is decoupled into two convex optimization sub-problems, named the location problem and the sizing problem. The location problem is addressed by relaxing the exact MINLP model, assuming that all the voltages are equal to 1∠0 ◦ , which allows obtaining a mixed-integer quadratic programming model as a function of the active and reactive power flows. The solution of this model provides the best set of nodes to locate all the STATCOMs. When all the nodes are selected, it solves the optimal reactive power problem through a second-order cone programming relaxation of the exact optimal power flow problem; the solution of the SOCP model provides the optimal sizes of the STATCOMs. Finally, it refines the exact objective function value due to the intrinsic non-convexities associated with the costs of the STATCOMs that were relaxed through the application of Taylor’s series expansion in the location and sizing stages. The numerical results in the IEEE 33- and 69-bus systems demonstrate the effectiveness and robustness of the proposed optimization problem when compared with large-scale MINLP solvers in GAMS and the discrete-continuous version of the vortex search algorithm (DCVSA) recently reported in the current literature. With respect to the benchmark cases of the test feeders, the proposed approach reaches the best reductions with 14.17% and 15.79% in the annual operative costs, which improves the solutions of the DCVSA, which are 13.71% and 15.30%, respectively
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-13
dc.date.accessioned.none.fl_str_mv 2022-03-18T18:32:38Z
dc.date.available.none.fl_str_mv 2022-03-18T18:32:38Z
dc.date.submitted.none.fl_str_mv 2022-03-18
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Alvarado-Barrios, L.; Hernández, J.C. An Approximate Mixed-Integer Convex Model to Reduce Annual Operating Costs in Radial Distribution Networks Using STATCOMs. Electronics 2021, 10, 3102. https://doi.org/10.3390/electronics10243102
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10624
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/electronics10243102
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Alvarado-Barrios, L.; Hernández, J.C. An Approximate Mixed-Integer Convex Model to Reduce Annual Operating Costs in Radial Distribution Networks Using STATCOMs. Electronics 2021, 10, 3102. https://doi.org/10.3390/electronics10243102
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10624
https://doi.org/10.3390/electronics10243102
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics 2021, 10, 3102
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/1/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/4/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/5/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.jpg
bitstream.checksum.fl_str_mv 4a3ec48d9639d6e5ab343c7648e6e7e1
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
70d65a08c240c616fe3c385d15a48bd2
359b9fc6842b05543ee3755f5c5e18de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021676474564608
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Alvarado-Barrios, Lázaro32360024-18b0-46cd-8b05-2744e95b85f6Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2022-03-18T18:32:38Z2022-03-18T18:32:38Z2021-12-132022-03-18Montoya, O.D.; Alvarado-Barrios, L.; Hernández, J.C. An Approximate Mixed-Integer Convex Model to Reduce Annual Operating Costs in Radial Distribution Networks Using STATCOMs. Electronics 2021, 10, 3102. https://doi.org/10.3390/electronics10243102https://hdl.handle.net/20.500.12585/10624https://doi.org/10.3390/electronics10243102Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de Bolívar: The problem of optimal siting and sizing of distribution static compensators (STATCOMs) is addressed in this research from the point of view of exact mathematical optimization. The exact mixed-integer nonlinear programming model (MINLP) is decoupled into two convex optimization sub-problems, named the location problem and the sizing problem. The location problem is addressed by relaxing the exact MINLP model, assuming that all the voltages are equal to 1∠0 ◦ , which allows obtaining a mixed-integer quadratic programming model as a function of the active and reactive power flows. The solution of this model provides the best set of nodes to locate all the STATCOMs. When all the nodes are selected, it solves the optimal reactive power problem through a second-order cone programming relaxation of the exact optimal power flow problem; the solution of the SOCP model provides the optimal sizes of the STATCOMs. Finally, it refines the exact objective function value due to the intrinsic non-convexities associated with the costs of the STATCOMs that were relaxed through the application of Taylor’s series expansion in the location and sizing stages. The numerical results in the IEEE 33- and 69-bus systems demonstrate the effectiveness and robustness of the proposed optimization problem when compared with large-scale MINLP solvers in GAMS and the discrete-continuous version of the vortex search algorithm (DCVSA) recently reported in the current literature. With respect to the benchmark cases of the test feeders, the proposed approach reaches the best reductions with 14.17% and 15.79% in the annual operative costs, which improves the solutions of the DCVSA, which are 13.71% and 15.30%, respectively15 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics 2021, 10, 3102An approximate mixed-Integer convex model to reduce annual operating costs in radial distribution networks using STATCOMsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Mixed-integer quadratic relaxationSecond-order cone programming reformulationDecoupled solution methodologyLocation problemSizing problemDistribution static compensatorsCartagena de IndiasInvestigadoresTemiz, A.; Almalki, A.M.; Kahraman, Ö.; Alshahrani, S.S.; Sönmez, E.B.; Almutairi, S.S.; Nadar, A.; Smiai, M.S.; Alabduljabbar, A.A. Investigation of MV Distribution Networks with High-Penetration Distributed PVs: Study for an Urban Area. Energy Procedia 2017, 141, 517–524Táczi, I.; Sinkovics, B.; Vokony, I.; Hartmann, B. The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review. Energies 2021, 14, 5363Arulraj, R.; Kumarappan, N. Optimal economic-driven planning of multiple DG and capacitor in distribution network considering different compensation coefficients in feeder’s failure rate evaluation. Eng. Sci. Technol. Int. J. 2019, 22, 67–77Castiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of DSTATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452.Abagiu, S.; Lepadat, I.; Helerea, E. Solutions for energy losses reduction in power networks with renewable energy sources. In Proceedings of the 2016 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016Soma, G.G. Optimal Sizing and Placement of Capacitor Banks in Distribution Networks Using a Genetic Algorithm. Electricity 2021, 2, 187–204.Gnanasekaran, N.; Chandramohan, S.; Kumar, P.S.; Imran, A.M. Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Eng. J. 2016, 7, 907–916Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786Sedighizadeh, M.; Dakhem, M.; Sarvi, M.; Kordkheili, H.H. Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization. Int. J. Energy Environ. Eng. 2014, 5, 3.Salau, A.O.; Gebru, Y.W.; Bitew, D. Optimal network reconfiguration for power loss minimization and voltage profile enhancement in distribution systems. Heliyon 2020, 6, e04233Pruitt, K.A.; Leyffer, S.; Newman, A.M.; Braun, R.J. A mixed-integer nonlinear program for the optimal design and dispatch of distributed generation systems. Optim. Eng. 2013, 15, 167–197Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158Home-Ortiz, J.M.; Pourakbari-Kasmaei, M.; Lehtonen, M.; Mantovani, J.R.S. Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electr. Power Syst. Res. 2019, 172, 11–21.Hassan, A.S.; Othman, E.A.; Bendary, F.M.; Ebrahim, M.A. Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Rep. 2020, 6, 3462–3471Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694.. Ayodele, T.; Ogunjuyigbe, A.; Akpeji, K.; Akinola, O. Prioritized rule based load management technique for residential building powered by PV/battery system. Eng. Sci. Technol. Int. J. 2017, 20, 859–873Kerrouche, K.D.E.; Lodhi, E.; Kerrouche, M.B.; Wang, L.; Zhu, F.; Xiong, G. Modeling and design of the improved D-STATCOM control for power distribution grid. SN Appl. Sci. 2020, 2, 1519Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L.; Gil-González, W.; Orozco-Henao, C. Genetic-Convex Model for Dynamic Reactive Power Compensation in Distribution Networks Using D-STATCOMs. Appl. Sci. 2021, 11, 3353Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564Taylor, J.A.; Hover, F.S. Convex Models of Distribution System Reconfiguration. IEEE Trans. Power Syst. 2012, 27, 1407–1413Zhao, Y.; Liu, S. Global optimization algorithm for mixed integer quadratically constrained quadratic program. J. Comput. Appl. Math. 2017, 319, 159–169. [Benson, H.Y.; Ümit Sa ˘glam. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36Sharma, A.K.; Saxena, A.; Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost. Int. J. Hybrid Inf. Technol. 2016, 9, 289–302.Montoya, O.D.; Fuentes, J.E.; Moya, F.D.; Barrios, J.Á.; Chamorro, H.R. Reduction of Annual Operational Costs in Power Systems through the Optimal Siting and Sizing of STATCOMs. Appl. Sci. 2021, 11, 4634http://purl.org/coar/resource_type/c_6501ORIGINALAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdfAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdfapplication/pdf341636https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/1/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf4a3ec48d9639d6e5ab343c7648e6e7e1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.txtAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.txtExtracted texttext/plain47553https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/4/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.txt70d65a08c240c616fe3c385d15a48bd2MD54THUMBNAILAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.jpgAn_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.jpgGenerated Thumbnailimage/jpeg101233https://repositorio.utb.edu.co/bitstream/20.500.12585/10624/5/An_Approximate_Mixed-Integer_Convex_Model_to_Reduc.pdf.jpg359b9fc6842b05543ee3755f5c5e18deMD5520.500.12585/10624oai:repositorio.utb.edu.co:20.500.12585/106242022-03-19 00:18:03.485Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=