Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem

In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian syste...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8867
Acceso en línea:
https://hdl.handle.net/20.500.12585/8867
Palabra clave:
Exponential stability
Hamiltonian systems
Non-linear analysis
Passivity-based control
Synchronous reference frame phase-locked-loop
Asymptotic stability
Differential equations
Hamiltonians
Locks (fasteners)
Nonlinear analysis
Nonlinear equations
Power control
Power electronics
System stability
Classical problems
Dissipative hamiltonian system
Hamiltonian systems
Nonlinear differential equation
Passivity based control
Phase Locked Loop (PLL)
Stability properties
Synchronous reference frame
Phase locked loops
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c5e200262a69cb32df645e8d29d8378e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8867
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
title Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
spellingShingle Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
Exponential stability
Hamiltonian systems
Non-linear analysis
Passivity-based control
Synchronous reference frame phase-locked-loop
Asymptotic stability
Differential equations
Hamiltonians
Locks (fasteners)
Nonlinear analysis
Nonlinear equations
Power control
Power electronics
System stability
Classical problems
Dissipative hamiltonian system
Hamiltonian systems
Nonlinear differential equation
Passivity based control
Phase Locked Loop (PLL)
Stability properties
Synchronous reference frame
Phase locked loops
title_short Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
title_full Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
title_fullStr Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
title_full_unstemmed Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
title_sort Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
dc.subject.keywords.none.fl_str_mv Exponential stability
Hamiltonian systems
Non-linear analysis
Passivity-based control
Synchronous reference frame phase-locked-loop
Asymptotic stability
Differential equations
Hamiltonians
Locks (fasteners)
Nonlinear analysis
Nonlinear equations
Power control
Power electronics
System stability
Classical problems
Dissipative hamiltonian system
Hamiltonian systems
Nonlinear differential equation
Passivity based control
Phase Locked Loop (PLL)
Stability properties
Synchronous reference frame
Phase locked loops
topic Exponential stability
Hamiltonian systems
Non-linear analysis
Passivity-based control
Synchronous reference frame phase-locked-loop
Asymptotic stability
Differential equations
Hamiltonians
Locks (fasteners)
Nonlinear analysis
Nonlinear equations
Power control
Power electronics
System stability
Classical problems
Dissipative hamiltonian system
Hamiltonian systems
Nonlinear differential equation
Passivity based control
Phase Locked Loop (PLL)
Stability properties
Synchronous reference frame
Phase locked loops
description In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian system (DHS). After that, we find the equilibrium points of this system and their stability properties. Additional properties are investigated such as the attraction region, the conditions for exponential stability and the performance for small unbalances an d/or transients in the grid. Simulations results complement the theoretical analysis. We do not propose a new type of PLL, instead, we propose a non-linear analysis for the classic synchronous reference frame PLL. This analysis is useful for theoretical and practical studies since this PLL is widely used in industrial applications. In addition, it can give insights for better understanding of the dynamics of the phase-locked-loop1 1The presentation of this paper in the COMPEL2018 was partially supported by the Maestrfa en Ingeniería Eléctrica Universidad Tecnologica de Pereira. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:32Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:32Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018
dc.identifier.isbn.none.fl_str_mv 9781538655412
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8867
dc.identifier.doi.none.fl_str_mv 10.1109/COMPEL.2018.8460081
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57204100992
36449223500
56919564100
14833891400
identifier_str_mv 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018
9781538655412
10.1109/COMPEL.2018.8460081
Universidad Tecnológica de Bolívar
Repositorio UTB
57204100992
36449223500
56919564100
14833891400
url https://hdl.handle.net/20.500.12585/8867
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 25 June 2018 through 28 June 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054470045&doi=10.1109%2fCOMPEL.2018.8460081&partnerID=40&md5=0d0af08d6e7c72319744b30c0f740a76
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 19th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8867/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021562931609600
spelling 2020-03-26T16:32:32Z2020-03-26T16:32:32Z20182018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 20189781538655412https://hdl.handle.net/20.500.12585/886710.1109/COMPEL.2018.8460081Universidad Tecnológica de BolívarRepositorio UTB57204100992364492235005691956410014833891400In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian system (DHS). After that, we find the equilibrium points of this system and their stability properties. Additional properties are investigated such as the attraction region, the conditions for exponential stability and the performance for small unbalances an d/or transients in the grid. Simulations results complement the theoretical analysis. We do not propose a new type of PLL, instead, we propose a non-linear analysis for the classic synchronous reference frame PLL. This analysis is useful for theoretical and practical studies since this PLL is widely used in industrial applications. In addition, it can give insights for better understanding of the dynamics of the phase-locked-loop1 1The presentation of this paper in the COMPEL2018 was partially supported by the Maestrfa en Ingeniería Eléctrica Universidad Tecnologica de Pereira. © 2018 IEEE.1The presentation of this paper in the COMPEL2018 was partially supported by the Maestría en Ingeniería Eléctrica Universidad Tecnologica de PereiraRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054470045&doi=10.1109%2fCOMPEL.2018.8460081&partnerID=40&md5=0d0af08d6e7c72319744b30c0f740a7619th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Probleminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fExponential stabilityHamiltonian systemsNon-linear analysisPassivity-based controlSynchronous reference frame phase-locked-loopAsymptotic stabilityDifferential equationsHamiltoniansLocks (fasteners)Nonlinear analysisNonlinear equationsPower controlPower electronicsSystem stabilityClassical problemsDissipative hamiltonian systemHamiltonian systemsNonlinear differential equationPassivity based controlPhase Locked Loop (PLL)Stability propertiesSynchronous reference framePhase locked loops25 June 2018 through 28 June 2018Bravo M.Garcés, AlejandroMontoya O.D.Baier C.R.Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase plls: A review of recent advances (2017) IEEE Transactions on Power Electronics, 32 (3), pp. 1894-1907. , MarchHangmann, C., Hedayat, C., Hilleringmann, U., Stability analysis of a charge pump phase-locked loop using autonomous difference equations (2014) IEEE Transactions on Circuits and Systems I: Regular Papers, 61 (9), pp. 2569-2577. , SeptZhou, J.Z., Ding, H., Fan, S., Zhang, Y., Gole, A.M., Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a vsc-hvdc converter (2014) IEEE Transactions on Power Delivery, 29 (5), pp. 2287-2296. , OctHarnefors, L., Wang, X., Yepes, A.G., Blaabjerg, F., Passivity-based stability assessment of grid-connected vscs hvdc an overview (2016) IEEE Journal of Emerging and Selected Topics in Power Electronics, 4 (1), pp. 116-125. , MarchFilho, R.M.S., Seixas, P.F., Cortizo, P.C., Torres, L.A.B., Souza, A.F., Comparison of three single-phase pll algorithms for ups applications (2008) IEEE Transactions on Industrial Electronics, 55 (8), pp. 2923-2932. , AugOrtega, R., Schaft Der Van, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596. , http://www.sciencedirect.com/science/article/pii/S0005109801002783Ortega, R., Garcia-Canseco, E., Interconnection and damping assignment passivity-based control: A survey (2004) European Journal of Control, 10 (5), pp. 432-450. , http://www.sciencedirect.com/science/article/pii/S094735800470391XKhalil, H., (2002) Nonlinear Systems, , 3rd ed. USA: Prentice HallPerko, L., (2001) Differential Equations and Dynamical Systems, , 3rd ed. New York: Springer-Verlaghttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8867/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8867oai:repositorio.utb.edu.co:20.500.12585/88672023-05-26 09:51:51.081Repositorio Institucional UTBrepositorioutb@utb.edu.co