Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem
In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian syste...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8867
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8867
- Palabra clave:
- Exponential stability
Hamiltonian systems
Non-linear analysis
Passivity-based control
Synchronous reference frame phase-locked-loop
Asymptotic stability
Differential equations
Hamiltonians
Locks (fasteners)
Nonlinear analysis
Nonlinear equations
Power control
Power electronics
System stability
Classical problems
Dissipative hamiltonian system
Hamiltonian systems
Nonlinear differential equation
Passivity based control
Phase Locked Loop (PLL)
Stability properties
Synchronous reference frame
Phase locked loops
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_c5e200262a69cb32df645e8d29d8378e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8867 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
title |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
spellingShingle |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem Exponential stability Hamiltonian systems Non-linear analysis Passivity-based control Synchronous reference frame phase-locked-loop Asymptotic stability Differential equations Hamiltonians Locks (fasteners) Nonlinear analysis Nonlinear equations Power control Power electronics System stability Classical problems Dissipative hamiltonian system Hamiltonian systems Nonlinear differential equation Passivity based control Phase Locked Loop (PLL) Stability properties Synchronous reference frame Phase locked loops |
title_short |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
title_full |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
title_fullStr |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
title_full_unstemmed |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
title_sort |
Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem |
dc.subject.keywords.none.fl_str_mv |
Exponential stability Hamiltonian systems Non-linear analysis Passivity-based control Synchronous reference frame phase-locked-loop Asymptotic stability Differential equations Hamiltonians Locks (fasteners) Nonlinear analysis Nonlinear equations Power control Power electronics System stability Classical problems Dissipative hamiltonian system Hamiltonian systems Nonlinear differential equation Passivity based control Phase Locked Loop (PLL) Stability properties Synchronous reference frame Phase locked loops |
topic |
Exponential stability Hamiltonian systems Non-linear analysis Passivity-based control Synchronous reference frame phase-locked-loop Asymptotic stability Differential equations Hamiltonians Locks (fasteners) Nonlinear analysis Nonlinear equations Power control Power electronics System stability Classical problems Dissipative hamiltonian system Hamiltonian systems Nonlinear differential equation Passivity based control Phase Locked Loop (PLL) Stability properties Synchronous reference frame Phase locked loops |
description |
In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian system (DHS). After that, we find the equilibrium points of this system and their stability properties. Additional properties are investigated such as the attraction region, the conditions for exponential stability and the performance for small unbalances an d/or transients in the grid. Simulations results complement the theoretical analysis. We do not propose a new type of PLL, instead, we propose a non-linear analysis for the classic synchronous reference frame PLL. This analysis is useful for theoretical and practical studies since this PLL is widely used in industrial applications. In addition, it can give insights for better understanding of the dynamics of the phase-locked-loop1 1The presentation of this paper in the COMPEL2018 was partially supported by the Maestrfa en Ingeniería Eléctrica Universidad Tecnologica de Pereira. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018 |
dc.identifier.isbn.none.fl_str_mv |
9781538655412 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8867 |
dc.identifier.doi.none.fl_str_mv |
10.1109/COMPEL.2018.8460081 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57204100992 36449223500 56919564100 14833891400 |
identifier_str_mv |
2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018 9781538655412 10.1109/COMPEL.2018.8460081 Universidad Tecnológica de Bolívar Repositorio UTB 57204100992 36449223500 56919564100 14833891400 |
url |
https://hdl.handle.net/20.500.12585/8867 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
25 June 2018 through 28 June 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054470045&doi=10.1109%2fCOMPEL.2018.8460081&partnerID=40&md5=0d0af08d6e7c72319744b30c0f740a76 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
19th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8867/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021562931609600 |
spelling |
2020-03-26T16:32:32Z2020-03-26T16:32:32Z20182018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 20189781538655412https://hdl.handle.net/20.500.12585/886710.1109/COMPEL.2018.8460081Universidad Tecnológica de BolívarRepositorio UTB57204100992364492235005691956410014833891400In this paper we investigate the dynamics of the classic synchronous reference frame phase-locked-loop (PLL) from a non-linear perspective. First, we demonstrate the nonlinear differential equations that describe the PLL under balanced conditions can be represented as a dissipative Hamiltonian system (DHS). After that, we find the equilibrium points of this system and their stability properties. Additional properties are investigated such as the attraction region, the conditions for exponential stability and the performance for small unbalances an d/or transients in the grid. Simulations results complement the theoretical analysis. We do not propose a new type of PLL, instead, we propose a non-linear analysis for the classic synchronous reference frame PLL. This analysis is useful for theoretical and practical studies since this PLL is widely used in industrial applications. In addition, it can give insights for better understanding of the dynamics of the phase-locked-loop1 1The presentation of this paper in the COMPEL2018 was partially supported by the Maestrfa en Ingeniería Eléctrica Universidad Tecnologica de Pereira. © 2018 IEEE.1The presentation of this paper in the COMPEL2018 was partially supported by the Maestría en Ingeniería Eléctrica Universidad Tecnologica de PereiraRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054470045&doi=10.1109%2fCOMPEL.2018.8460081&partnerID=40&md5=0d0af08d6e7c72319744b30c0f740a7619th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Probleminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fExponential stabilityHamiltonian systemsNon-linear analysisPassivity-based controlSynchronous reference frame phase-locked-loopAsymptotic stabilityDifferential equationsHamiltoniansLocks (fasteners)Nonlinear analysisNonlinear equationsPower controlPower electronicsSystem stabilityClassical problemsDissipative hamiltonian systemHamiltonian systemsNonlinear differential equationPassivity based controlPhase Locked Loop (PLL)Stability propertiesSynchronous reference framePhase locked loops25 June 2018 through 28 June 2018Bravo M.Garcés, AlejandroMontoya O.D.Baier C.R.Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase plls: A review of recent advances (2017) IEEE Transactions on Power Electronics, 32 (3), pp. 1894-1907. , MarchHangmann, C., Hedayat, C., Hilleringmann, U., Stability analysis of a charge pump phase-locked loop using autonomous difference equations (2014) IEEE Transactions on Circuits and Systems I: Regular Papers, 61 (9), pp. 2569-2577. , SeptZhou, J.Z., Ding, H., Fan, S., Zhang, Y., Gole, A.M., Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a vsc-hvdc converter (2014) IEEE Transactions on Power Delivery, 29 (5), pp. 2287-2296. , OctHarnefors, L., Wang, X., Yepes, A.G., Blaabjerg, F., Passivity-based stability assessment of grid-connected vscs hvdc an overview (2016) IEEE Journal of Emerging and Selected Topics in Power Electronics, 4 (1), pp. 116-125. , MarchFilho, R.M.S., Seixas, P.F., Cortizo, P.C., Torres, L.A.B., Souza, A.F., Comparison of three single-phase pll algorithms for ups applications (2008) IEEE Transactions on Industrial Electronics, 55 (8), pp. 2923-2932. , AugOrtega, R., Schaft Der Van, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596. , http://www.sciencedirect.com/science/article/pii/S0005109801002783Ortega, R., Garcia-Canseco, E., Interconnection and damping assignment passivity-based control: A survey (2004) European Journal of Control, 10 (5), pp. 432-450. , http://www.sciencedirect.com/science/article/pii/S094735800470391XKhalil, H., (2002) Nonlinear Systems, , 3rd ed. USA: Prentice HallPerko, L., (2001) Differential Equations and Dynamical Systems, , 3rd ed. New York: Springer-Verlaghttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8867/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8867oai:repositorio.utb.edu.co:20.500.12585/88672023-05-26 09:51:51.081Repositorio Institucional UTBrepositorioutb@utb.edu.co |