An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm

This paper proposes an energy management system (EMS) for the day-ahead dispatch of battery storage systems (BSS) under a distributed generation environment for direct current (DC) networks, with the main objective of reducing the cost of the energy purchased to the utility grid. This approach consi...

Full description

Autores:
Grisales-Noreña, Luis Fernando
Montoya, Oscar
Ramos-Paja, Carlos Andrés
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9502
Acceso en línea:
https://hdl.handle.net/20.500.12585/9502
https://www.sciencedirect.com/science/article/abs/pii/S2352152X19314252
Palabra clave:
Direct current networks
Distributed generation
Energy storage systems
Parallel processing
Optimal power flow
Minimization of energy cost
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_c5229dbe15297d4c9bdccf6d0e077952
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9502
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
title An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
spellingShingle An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
Direct current networks
Distributed generation
Energy storage systems
Parallel processing
Optimal power flow
Minimization of energy cost
title_short An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
title_full An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
title_fullStr An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
title_full_unstemmed An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
title_sort An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm
dc.creator.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar
Ramos-Paja, Carlos Andrés
dc.contributor.author.none.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar
Ramos-Paja, Carlos Andrés
dc.subject.keywords.spa.fl_str_mv Direct current networks
Distributed generation
Energy storage systems
Parallel processing
Optimal power flow
Minimization of energy cost
topic Direct current networks
Distributed generation
Energy storage systems
Parallel processing
Optimal power flow
Minimization of energy cost
description This paper proposes an energy management system (EMS) for the day-ahead dispatch of battery storage systems (BSS) under a distributed generation environment for direct current (DC) networks, with the main objective of reducing the cost of the energy purchased to the utility grid. This approach considers the state-of-charge (SOC) of the BSS and the production variation of the renewable generators, in particular of wind and photovoltaic technologies, and the variations in the power consumption and energy costs. The proposed EMS uses a master-slave strategy formed by a parallel implementation of the particle swarm optimizer (PPSO) and a multi-period power flow method based on successive approximations (SA), with the aim of achieving the optimal daily operation of the BSS. The objective function selected for the optimization was the reduction of the energy purchasing costs, also including the power balance, devices capabilities and voltage regulation. The effectiveness of the EMS is evaluated in a test system of 21 buses, comparing the solution quality and speed with three optimization techniques published in literature: a black hole optimizer, a continuous genetic algorithm with matrix structure, and a traditional Chu & Beasley genetic algorithm. In addition, two simulation scenarios were used to identify the optimal final SOC conditions for the BSS. Finally, the results show that the proposed EMS provides the best trade-off between quality solution and speed. The simulations are conducted in MATLAB software using sequential quadratic programming.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-29T21:20:25Z
dc.date.available.none.fl_str_mv 2020-10-29T21:20:25Z
dc.date.issued.none.fl_str_mv 2020-06-16
dc.date.submitted.none.fl_str_mv 2020-10-29
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Grisales-Noreña, Luis & Montoya Giraldo, Oscar & Ramos-Paja, Carlos. (2020). An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage. 29. 101488. 10.1016/j.est.2020.101488.
dc.identifier.issn.none.fl_str_mv 2352-152X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9502
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S2352152X19314252
dc.identifier.doi.none.fl_str_mv 10.1016/j.est.2020.101488
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Grisales-Noreña, Luis & Montoya Giraldo, Oscar & Ramos-Paja, Carlos. (2020). An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage. 29. 101488. 10.1016/j.est.2020.101488.
2352-152X
10.1016/j.est.2020.101488
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9502
https://www.sciencedirect.com/science/article/abs/pii/S2352152X19314252
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Journal of Energy Storage Volume 29, June 2020, 101488
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/2/39.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/4/39.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/5/39.pdf.jpg
bitstream.checksum.fl_str_mv 2bbd8fa8c42a35df33f98b4ceab6a1f5
e20ad307a1c5f3f25af9304a7a7c86b6
87dd98b6c976a14457eaf7a5231a1089
18674234a2319567f28f9bcda6e22f4b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021683169722368
spelling Grisales-Noreña, Luis Fernandob2728c9a-1fd6-47c8-b7bc-d95ea0252207Montoya, Oscar008c220c-d50f-41c7-8294-a0fd23bfd9f2Ramos-Paja, Carlos Andrésac1a64c3-4089-49e6-9f7a-b2285dd569032020-10-29T21:20:25Z2020-10-29T21:20:25Z2020-06-162020-10-29Grisales-Noreña, Luis & Montoya Giraldo, Oscar & Ramos-Paja, Carlos. (2020). An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage. 29. 101488. 10.1016/j.est.2020.101488.2352-152Xhttps://hdl.handle.net/20.500.12585/9502https://www.sciencedirect.com/science/article/abs/pii/S2352152X1931425210.1016/j.est.2020.101488Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes an energy management system (EMS) for the day-ahead dispatch of battery storage systems (BSS) under a distributed generation environment for direct current (DC) networks, with the main objective of reducing the cost of the energy purchased to the utility grid. This approach considers the state-of-charge (SOC) of the BSS and the production variation of the renewable generators, in particular of wind and photovoltaic technologies, and the variations in the power consumption and energy costs. The proposed EMS uses a master-slave strategy formed by a parallel implementation of the particle swarm optimizer (PPSO) and a multi-period power flow method based on successive approximations (SA), with the aim of achieving the optimal daily operation of the BSS. The objective function selected for the optimization was the reduction of the energy purchasing costs, also including the power balance, devices capabilities and voltage regulation. The effectiveness of the EMS is evaluated in a test system of 21 buses, comparing the solution quality and speed with three optimization techniques published in literature: a black hole optimizer, a continuous genetic algorithm with matrix structure, and a traditional Chu & Beasley genetic algorithm. In addition, two simulation scenarios were used to identify the optimal final SOC conditions for the BSS. Finally, the results show that the proposed EMS provides the best trade-off between quality solution and speed. The simulations are conducted in MATLAB software using sequential quadratic programming.application/pdfengJournal of Energy Storage Volume 29, June 2020, 101488An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current networksDistributed generationEnergy storage systemsParallel processingOptimal power flowMinimization of energy costinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCampus TecnológicoInvestigadoreshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL39.pdf39.pdfapplication/pdf86209https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/2/39.pdf2bbd8fa8c42a35df33f98b4ceab6a1f5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT39.pdf.txt39.pdf.txtExtracted texttext/plain1606https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/4/39.pdf.txt87dd98b6c976a14457eaf7a5231a1089MD54THUMBNAIL39.pdf.jpg39.pdf.jpgGenerated Thumbnailimage/jpeg78321https://repositorio.utb.edu.co/bitstream/20.500.12585/9502/5/39.pdf.jpg18674234a2319567f28f9bcda6e22f4bMD5520.500.12585/9502oai:repositorio.utb.edu.co:20.500.12585/95022023-05-26 11:14:31.418Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=