Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices

In this work, the surface modification of zinc oxide nanoparticles (ZnO-NPs) with 3-glycidyloxy-propyl-trimethoxysilane (GPTMS) was investigated. The ZnO-NPs were synthesized using the physical method of continuous arc discharge in controlled atmosphere (DARC-AC). The surface modification was carrie...

Full description

Autores:
Salas, Alexis
Jaramillo, Andrés Felipe
Palacio, Daniel Andrés
Díaz-Gómez, Andrés
Rojas, David
Medina, Carlos
Pérez-Tijerina, Eduardo
Solís-Pomar, Francisco
Meléndrez, Manuel Francisco
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12216
Acceso en línea:
https://hdl.handle.net/20.500.12585/12216
Palabra clave:
Organic Coatings;
Corrosion Protection;
Corrosion
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_c4b25603e668275bedff5fcc200bd95e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12216
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
title Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
spellingShingle Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
Organic Coatings;
Corrosion Protection;
Corrosion
LEMB
title_short Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
title_full Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
title_fullStr Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
title_full_unstemmed Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
title_sort Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
dc.creator.fl_str_mv Salas, Alexis
Jaramillo, Andrés Felipe
Palacio, Daniel Andrés
Díaz-Gómez, Andrés
Rojas, David
Medina, Carlos
Pérez-Tijerina, Eduardo
Solís-Pomar, Francisco
Meléndrez, Manuel Francisco
dc.contributor.author.none.fl_str_mv Salas, Alexis
Jaramillo, Andrés Felipe
Palacio, Daniel Andrés
Díaz-Gómez, Andrés
Rojas, David
Medina, Carlos
Pérez-Tijerina, Eduardo
Solís-Pomar, Francisco
Meléndrez, Manuel Francisco
dc.subject.keywords.spa.fl_str_mv Organic Coatings;
Corrosion Protection;
Corrosion
topic Organic Coatings;
Corrosion Protection;
Corrosion
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this work, the surface modification of zinc oxide nanoparticles (ZnO-NPs) with 3-glycidyloxy-propyl-trimethoxysilane (GPTMS) was investigated. The ZnO-NPs were synthesized using the physical method of continuous arc discharge in controlled atmosphere (DARC-AC). The surface modification was carried out using a chemical method with constant agitation for 24 h at room temperature. This surface functionalization of zinc oxide nanoparticles (ZnO-NPs-GPTMS) was experimentally confirmed by infrared spectroscopy (FT-IR), TGA, and XRD, and its morphological characterization was performed with SEM. The increase in mechanical bending properties in the two final hybrid materials compared to the base polymers was verified. An average increase of 67% was achieved with a moderate decrease in ductility. In the case of compressive strength, they showed mixed results, maintaining the properties. With respect to thermal properties, it was observed that inorganic reinforcement conferred resistance to degradation on the base material, giving a greater resistance to high temperatures. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:22:39Z
dc.date.available.none.fl_str_mv 2023-07-19T21:22:39Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Salas, A., Jaramillo, A. F., Palacio, D. A., Díaz-Gómez, A., Rojas, D., Medina, C., ... & Meléndrez, M. F. (2022). Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers, 14(8), 1579.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12216
dc.identifier.doi.none.fl_str_mv 10.3390/polym14081579
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Salas, A., Jaramillo, A. F., Palacio, D. A., Díaz-Gómez, A., Rojas, D., Medina, C., ... & Meléndrez, M. F. (2022). Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers, 14(8), 1579.
10.3390/polym14081579
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12216
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Polymers
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/1/polymers-14-01579%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/2/polymers-14-01579%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/4/polymers-14-01579%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/5/polymers-14-01579%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 6de92c749404562d96067b1752657e14
6de92c749404562d96067b1752657e14
e20ad307a1c5f3f25af9304a7a7c86b6
0fc538d6e42af4ec0b8c2499e793e87b
7831d7314333a433349b43d890a62d25
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397600052740096
spelling Salas, Alexis257f04bc-cad1-4681-a11f-e4edc997647eJaramillo, Andrés Felipe71df81a9-6cd5-4d8d-b12f-a1db4a7fde71Palacio, Daniel Andrés14938efa-451b-4734-aa29-f368a9f2ee91Díaz-Gómez, Andrésab5f2230-a3ca-42fc-a344-3f731702be21Rojas, David8c920364-d787-4be1-9490-4819ced3ac15Medina, Carlos47fbd2f6-8221-43da-8310-4eb09ed5b222Pérez-Tijerina, Eduardo292b2ddc-6ea8-40df-a3bc-8478262d5361Solís-Pomar, Francisco8f359f73-1df8-42c8-8abb-c33816bd251cMeléndrez, Manuel Francisco40d6e913-b733-4a56-aed0-e7db68c0551d2023-07-19T21:22:39Z2023-07-19T21:22:39Z20222023Salas, A., Jaramillo, A. F., Palacio, D. A., Díaz-Gómez, A., Rojas, D., Medina, C., ... & Meléndrez, M. F. (2022). Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers, 14(8), 1579.https://hdl.handle.net/20.500.12585/1221610.3390/polym14081579Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this work, the surface modification of zinc oxide nanoparticles (ZnO-NPs) with 3-glycidyloxy-propyl-trimethoxysilane (GPTMS) was investigated. The ZnO-NPs were synthesized using the physical method of continuous arc discharge in controlled atmosphere (DARC-AC). The surface modification was carried out using a chemical method with constant agitation for 24 h at room temperature. This surface functionalization of zinc oxide nanoparticles (ZnO-NPs-GPTMS) was experimentally confirmed by infrared spectroscopy (FT-IR), TGA, and XRD, and its morphological characterization was performed with SEM. The increase in mechanical bending properties in the two final hybrid materials compared to the base polymers was verified. An average increase of 67% was achieved with a moderate decrease in ductility. In the case of compressive strength, they showed mixed results, maintaining the properties. With respect to thermal properties, it was observed that inorganic reinforcement conferred resistance to degradation on the base material, giving a greater resistance to high temperatures. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.18 páginasapplication/pdfengPolymersHybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matricesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Organic Coatings;Corrosion Protection;CorrosionLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasKango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A review (2013) Progress in Polymer Science, 38 (8), pp. 1232-1261. Cited 1631 times. doi: 10.1016/j.progpolymsci.2013.02.003Bakkardouch, F.E., Atmani, H., El Khalloufi, M., Jouaiti, A., Laallam, L. Modified cellulose-based hybrid materials: Effect of ZnO and CuO nanoparticles on the thermal insulation property (2021) Materials Chemistry and Physics, 271, art. no. 124881. Cited 5 times. http://www.journals.elsevier.com/materials-chemistry-and-physics doi: 10.1016/j.matchemphys.2021.124881Afshari, A., Akbari, M., Toghraie, D., Yazdi, M.E. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%): New correlation and margin of deviation (2018) Journal of Thermal Analysis and Calorimetry, 132 (2), pp. 1001-1015. Cited 159 times. http://www.springer.com/sgw/cda/frontpage/0,11855,1-40109-70-35752391-0,00.html doi: 10.1007/s10973-018-7009-1Zawisza, B., Sitko, R., Queralt, I., Margui, E., Gagor, A. Cellulose mini-membranes modified with TiO2 for separation, determination, and speciation of arsenates and selenites (2020) Microchimica Acta, 187 (8), art. no. 430. Cited 11 times. http://www.springer/at/mca doi: 10.1007/s00604-020-04387-4Ingle, A.P., Duran, N., Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review (2014) Applied Microbiology and Biotechnology, 98 (3), pp. 1001-1009. Cited 355 times. link.springer.de/link/service/journals/00253/index.htm doi: 10.1007/s00253-013-5422-8El-Nahhal, I.M., Salem, J.K., Kuhn, S., Hammad, T., Hempelmann, R., Al Bhaisi, S. Synthesis and characterization of silica coated and functionalized silica coated zinc oxide nanomaterials (2016) Powder Technology, 287, pp. 439-446. Cited 46 times. www.elsevier.com/locate/powtec doi: 10.1016/j.powtec.2015.09.042Ji, T., Ma, C., Brisbin, L., Mu, L., Robertson, C.G., Dong, Y., Zhu, J. Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties (2017) Applied Surface Science, 399, pp. 565-572. Cited 21 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.11.241Jaramillo, A.F., Riquelme, S.A., Sánchez-Sanhueza, G., Medina, C., Solís-Pomar, F., Rojas, D., Montalba, C., (...), Pérez-Tijerina, E. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly(butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4 (2019) Nanoscale Research Letters, 14, art. no. 158. Cited 23 times. http://www.springer.com/materials/nanotechnology/journal/11671 doi: 10.1186/s11671-019-2987-xLi, W., Song, B., Zhang, S., Zhang, F., Liu, C., Zhang, N., Yao, H., (...), Shi, Y. Using 3-isocyanatopropyltrimethoxysilane to decorate graphene oxide with nano-titanium dioxide for enhancing the anti-corrosion properties of epoxy coating (2020) Polymers, 12 (4), art. no. 837. Cited 32 times. https://www.mdpi.com/2073-4360/12/4/837 doi: 10.3390/POLYM12040837Amirbeygi, H., Khosravi, H., Tohidlou, E. Reinforcing effects of aminosilane-functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites (2019) Journal of Applied Polymer Science, 136 (18), art. no. 47410. Cited 53 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.47410Toledo, L., Palacio, D., Sánchez, S., Urbano, B.F. Pluronic-coated nanoparticles for enhanced spatial distribution and increased softness of nanocomposite hydrogels (2020) Journal of Materials Science, 55 (21), pp. 8968-8982. Cited 7 times. www.springer.com/journal/10853 doi: 10.1007/s10853-020-04658-8Jaramillo, A.F., Medina, C., Flores, P., Canales, C., Maldonado, C., Castaño Rivera, P., Rojas, D., (...), Meléndrez, M.F. Improvement of thermomechanical properties of composite based on hydroxyapatite functionalized with alkylsilanes in epoxy matrix (2020) Ceramics International, 46 (6), pp. 8368-8378. Cited 10 times. https://www.journals.elsevier.com/ceramics-international doi: 10.1016/j.ceramint.2019.12.069Solis-Pomar, F., Jaramillo, A., Lopez-Villareal, J., Medina, C., Rojas, D., Mera, A.C., Meléndrez, M.F., (...), Pérez-Tijerina, E. Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition (2016) Ceramics International, 42 (16), pp. 18045-18052. Cited 28 times. doi: 10.1016/j.ceramint.2016.08.084Meléndrez, M.F., Solis-Pomar, F., Gutierrez-Lazos, C.D., Flores, P., Jaramillo, A.F., Fundora, A., Pérez-Tijerina, E. A new synthesis route of ZnO nanonails via microwave plasma-assisted chemical vapor deposition (2016) Ceramics International, Part B 42 (1), pp. 1160-1168. Cited 26 times. doi: 10.1016/j.ceramint.2015.09.046Ramezanzadeh, B., Attar, M.M., Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite (2011) Journal of Thermal Analysis and Calorimetry, 103 (2), pp. 731-739. Cited 116 times. doi: 10.1007/s10973-010-0996-1Souza, V.G.L., Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food-A review (2016) Food Packaging and Shelf Life, 8, pp. 63-70. Cited 218 times. http://www.journals.elsevier.com/food-packaging-and-shelf-life/ doi: 10.1016/j.fpsl.2016.04.001Li, X., Zhou, Q., Huang, Y., Yang, J. Nanoindentation and abrasion in Fe3O4/rGO reinforced epoxy electromagnetic protective coatings (Open Access) (2021) Journal of Alloys and Compounds, 887, art. no. 161277. Cited 15 times. https://www.journals.elsevier.com/journal-of-alloys-and-compounds doi: 10.1016/j.jallcom.2021.161277Prabhu, S., Bubbly, S.G., Gudennavar, S.B. Thermal, mechanical and γ-ray shielding properties of micro- and nano-Ta2O5 loaded DGEBA epoxy resin composites (2021) Journal of Applied Polymer Science, 138 (44), art. no. 51289. Cited 8 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.51289Chen, S., Wang, X., Zhu, G., Lu, Z., Zhang, Y., Zhao, X., Hou, B. Developing multi-wall carbon nanotubes/Fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties (2021) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, art. no. 127309. Cited 15 times. www.elsevier.com/locate/colsurfa doi: 10.1016/j.colsurfa.2021.127309Thipperudrappa, S., Ullal Kini, A., Hiremath, A. Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites (2020) Polymer Composites, 41 (1), pp. 174-181. Cited 35 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1548-0569 doi: 10.1002/pc.25357Wang, T., Liu, C., Li, D., Hou, Y., Zhang, G., Zhang, B. Nano ZnO/epoxy coating to promote surface charge dissipation on insulators in DC gas-insulated systems (2020) IEEE Transactions on Dielectrics and Electrical Insulation, 27 (4), art. no. 9160431, pp. 1322-1329. Cited 35 times. https://ieeexplore.ieee.org/servlet/opac?punumber=94 doi: 10.1109/TDEI.2020.008793Samad, U.A., Alam, M.A., Anis, A., Sherif, E.S.M., Al-Mayman, S.I., Al-Zahrani, S.M. Effect of incorporated ZnO nanoparticles on the corrosion performance of SiO2 nanoparticle-based mechanically robust epoxy coatings (2020) Materials, 13 (17), art. no. 3767. Cited 9 times. https://res.mdpi.com/d_attachment/materials/materials-13-03767/article_deploy/materials-13-03767.pdf doi: 10.3390/MA13173767Yari, H., Rostami, M. Enhanced weathering performance of epoxy/ZnO nanocomposite coatings via functionalization of ZnO UV blockers with amino and glycidoxy silane coupling agents (Open Access) (2020) Progress in Organic Coatings, 147, art. no. 105773. Cited 18 times. www.elsevier.com/locate/porgcoat doi: 10.1016/j.porgcoat.2020.105773Yap, S.W., Johari, N., Mazlan, S.A., Hassan, N.A. Mechanochemical durability and self-cleaning performance of zinc oxide-epoxy superhydrophobic coating prepared via a facile one-step approach (2021) Ceramics International, 47 (11), pp. 15825-15833. Cited 25 times. https://www.journals.elsevier.com/ceramics-international doi: 10.1016/j.ceramint.2021.02.156Jaramillo, A.F., Baez-Cruz, R., Montoya, L.F., Medinam, C., Pérez-Tijerina, E., Salazar, F., Rojas, D., (...), Melendrez, M.F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy (2017) Ceramics International, 43 (15), pp. 11838-11847. Cited 73 times. doi: 10.1016/j.ceramint.2017.06.027MedinaM, C., Rojas, D., Flores, P., Peréz-Tijerina, E., Meléndrez, M.F. Effect of ZnO nanoparticles obtained by arc discharge on thermo-mechanical properties of matrix thermoset nanocomposites (2016) Journal of Applied Polymer Science, 133 (30), art. no. 43631. Cited 13 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.43631Amaria, A., Nuryono, N., Suyanta, S. Preparation of L-arginine-modified silica-coated magnetite nanoparticles for Au(III) adsorption (2017) Oriental Journal of Chemistry, 33 (1), pp. 384-395. Cited 13 times. http://www.orientjchem.org/pdf/vol33no1/OJC_Vol33_No1_p_384-395.pdf doi: 10.13005/ojc/330146González, M.G., Cabanelas, J.C., Baselga, J. Applications of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water Uptake (2012) Infrared Spectroscopy-Materials Science, Engineering and Technology, 2, pp. 261-284. Cited 395 times. Theophanides, T., Ed.; InTech: Rijeka, CroatiaSuresh, S., Nisha, P., Saravanan, P., Jayamoorthy, K., Karthikeyan, S. Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO (2018) Silicon, 10 (4), pp. 1291-1303. Cited 15 times. http://www.springer.com/chemistry/inorganic/journal/12633?cm_mmc=AD-_-Journal-_-PSE10941_V1-_-12633 doi: 10.1007/s12633-017-9604-3Afzal, A., Siddiqi, H.M., Saeed, S., Ahmad, Z. The influence of epoxy functionalized silica nanoparticles on stress dispersion and crack resistance in epoxy-based hybrids (Open Access) (2011) Materials Express, 1 (4), pp. 299-306. Cited 18 times. http://docserver.ingentaconnect.com/deliver/connect/asp/21585849/v1n4/s7.pdf? doi: 10.1166/mex.2011.1042Macan, J., Paljar, K., Burmas, B., Špehar, G., Leskovac, M., Gajović, A. Epoxy-matrix composites filled with surface-modified SiO2 nanoparticles (Open Access) (2017) Journal of Thermal Analysis and Calorimetry, 127 (1), pp. 399-408. Cited 19 times. http://www.springer.com/sgw/cda/frontpage/0,11855,1-40109-70-35752391-0,00.html doi: 10.1007/s10973-016-5976-7Korayem, A.H., Barati, M.R., Simon, G.P., Zhao, X.L., Duan, W.H. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch (Open Access) (2014) Composites Part A: Applied Science and Manufacturing, 61, pp. 126-133. Cited 56 times. doi: 10.1016/j.compositesa.2014.02.016Tian, Y., Zhang, H., Zhao, J., Li, T., Bie, B.-X., Luo, S.-N., Zhang, Z. High strain rate compression of epoxy based nanocomposites (2016) Composites Part A: Applied Science and Manufacturing, 90, pp. 62-70. Cited 29 times. doi: 10.1016/j.compositesa.2016.06.008Gómez-Del Río, T., Rodríguez, J., Pearson, R.A. Compressive properties of nanoparticle modified epoxy resin at different strain rates (2014) Composites Part B: Engineering, 57, pp. 173-179. Cited 50 times. doi: 10.1016/j.compositesb.2013.10.002Yang, P., Wang, G., Xia, X., Takezawa, Y., Wang, H., Yamada, S., Du, Q., (...), Zhong, W. Preparation and thermo-mechanical properties of heat-resistant epoxy/silica hybrid materials (2008) Polymer Engineering and Science, 48 (6), pp. 1214-1221. Cited 37 times. doi: 10.1002/pen.21081http://purl.org/coar/resource_type/c_6501ORIGINALpolymers-14-01579 (1).pdfpolymers-14-01579 (1).pdfapplication/pdf40628961https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/1/polymers-14-01579%20%281%29.pdf6de92c749404562d96067b1752657e14MD51polymers-14-01579 (1).pdfpolymers-14-01579 (1).pdfapplication/pdf40628961https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/2/polymers-14-01579%20%281%29.pdf6de92c749404562d96067b1752657e14MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTpolymers-14-01579 (1).pdf.txtpolymers-14-01579 (1).pdf.txtExtracted texttext/plain67660https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/4/polymers-14-01579%20%281%29.pdf.txt0fc538d6e42af4ec0b8c2499e793e87bMD54THUMBNAILpolymers-14-01579 (1).pdf.jpgpolymers-14-01579 (1).pdf.jpgGenerated Thumbnailimage/jpeg8154https://repositorio.utb.edu.co/bitstream/20.500.12585/12216/5/polymers-14-01579%20%281%29.pdf.jpg7831d7314333a433349b43d890a62d25MD5520.500.12585/12216oai:repositorio.utb.edu.co:20.500.12585/122162023-07-20 00:17:44.481Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=