Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs

The convolutional neural networks (CNNs) as tools for ultrasound image segmentation often have their performance affected by the low signal-to-noise ratio of the images. This prevents a correct classification and extraction of relevant information and therefore affects clinical diagnosis. We propose...

Full description

Autores:
Romero-Mercado, Caleb D.
Contreraz-Ortiz, Sonia H.
Marrugo, Andres G.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12161
Acceso en línea:
https://hdl.handle.net/20.500.12585/12161
Palabra clave:
Photoacoustic Tomography;
Thermoacoustics;
Echography
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c3657cb799f6396f617ef46ae5f5ba00
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12161
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
title Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
spellingShingle Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
Photoacoustic Tomography;
Thermoacoustics;
Echography
LEMB
title_short Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
title_full Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
title_fullStr Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
title_full_unstemmed Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
title_sort Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs
dc.creator.fl_str_mv Romero-Mercado, Caleb D.
Contreraz-Ortiz, Sonia H.
Marrugo, Andres G.
dc.contributor.author.none.fl_str_mv Romero-Mercado, Caleb D.
Contreraz-Ortiz, Sonia H.
Marrugo, Andres G.
dc.subject.keywords.spa.fl_str_mv Photoacoustic Tomography;
Thermoacoustics;
Echography
topic Photoacoustic Tomography;
Thermoacoustics;
Echography
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The convolutional neural networks (CNNs) as tools for ultrasound image segmentation often have their performance affected by the low signal-to-noise ratio of the images. This prevents a correct classification and extraction of relevant information and therefore affects clinical diagnosis. We propose a study of the effect of different speckle filtering methods on CNN performance. For the proposed metrics (Jaccard coefficient and BF-Score), it was obtained that the SRAD filter exhibited the best behavior even in the lowest quality data. In addition, the lowest values were obtained for the standard deviation and variance, which translates into lower data dispersion, better repeatability, and, therefore, greater confidence in its accuracy. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T12:57:15Z
dc.date.available.none.fl_str_mv 2023-07-19T12:57:15Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Romero-Mercado, C. D., Contreras-Ortiz, S. H., & Marrugo, A. G. (2022, November). Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs. In Workshop on Engineering Applications (pp. 150-159). Cham: Springer Nature Switzerland.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12161
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-20611-5_13
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Romero-Mercado, C. D., Contreras-Ortiz, S. H., & Marrugo, A. G. (2022, November). Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs. In Workshop on Engineering Applications (pp. 150-159). Cham: Springer Nature Switzerland.
10.1007/978-3-031-20611-5_13
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12161
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Communications in Computer and Information Science
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/1/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/4/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/5/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf.jpg
bitstream.checksum.fl_str_mv 311953f9735e089c53d2d7134bc72f94
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
d27d79316affd7ec3f82e3fa6eb0cd3b
c9cbf7c73346edb19f5e738ab0448efc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021638105071616
spelling Romero-Mercado, Caleb D.b47285bd-6c45-4797-bbf7-8e88b0cd4198Contreraz-Ortiz, Sonia H.377948db-f010-4cc5-ae11-973b8e035474Marrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f5422023-07-19T12:57:15Z2023-07-19T12:57:15Z20222023Romero-Mercado, C. D., Contreras-Ortiz, S. H., & Marrugo, A. G. (2022, November). Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs. In Workshop on Engineering Applications (pp. 150-159). Cham: Springer Nature Switzerland.https://hdl.handle.net/20.500.12585/1216110.1007/978-3-031-20611-5_13Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe convolutional neural networks (CNNs) as tools for ultrasound image segmentation often have their performance affected by the low signal-to-noise ratio of the images. This prevents a correct classification and extraction of relevant information and therefore affects clinical diagnosis. We propose a study of the effect of different speckle filtering methods on CNN performance. For the proposed metrics (Jaccard coefficient and BF-Score), it was obtained that the SRAD filter exhibited the best behavior even in the lowest quality data. In addition, the lowest values were obtained for the standard deviation and variance, which translates into lower data dispersion, better repeatability, and, therefore, greater confidence in its accuracy. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Communications in Computer and Information ScienceEffect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Photoacoustic Tomography;Thermoacoustics;EchographyLEMBCartagena de IndiasBhatti, U.A., Yu, Z., Chanussot, J., Zeeshan, Z., Yuan, L., Luo, W., Nawaz, S.A., (...), Mehmood, A. Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor Filtering (2022) IEEE Transactions on Geoscience and Remote Sensing, 60. Cited 81 times. https://ieeexplore.ieee.org/servlet/opac?punumber=36 doi: 10.1109/TGRS.2021.3090410Byra Reddy, G.R., Prasanna Kumar, H. Breast Ultrasound Image Segmentation to Detect Tumor by Using Level Sets (2022) Lecture Notes in Networks and Systems, 355, pp. 319-325. springer.com/series/15179 ISBN: 978-981168511-8 doi: 10.1007/978-981-16-8512-5_35Cesur, E., Yildiz, N., Tavsanoglu, V. On an improved FPGA implementation of CNN-based Gabor-type filters (2012) IEEE Transactions on Circuits and Systems II: Express Briefs, 59 (11), art. no. 6341057, pp. 815-819. Cited 17 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2012.2218471Chen, M., Yu, L., Zhi, C., Sun, R., Zhu, S., Gao, Z., Ke, Z., (...), Zhang, Y. Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization (2022) Computers in Industry, 134, art. no. 103551. Cited 37 times. https://www.journals.elsevier.com/computers-in-industry doi: 10.1016/j.compind.2021.103551Gómez-Flores, W., Coelho de Albuquerque Pereira, W. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound (Open Access) (2020) Computers in Biology and Medicine, 126, art. no. 104036. Cited 34 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2020.104036Jeon, M., Kim, C. Multimodal photoacoustic tomography (2013) IEEE Transactions on Multimedia, 15 (5), art. no. 6425487, pp. 975-982. Cited 66 times. doi: 10.1109/TMM.2013.2244203Kim, J., Lee, D., Jung, U., Kim, C. Photoacoustic imaging platforms for multimodal imaging (2015) Ultrasonography, 34 (2), pp. 88-97. Cited 93 times. http://e-ultrasonography.org/upload/usg-14062.pdf doi: 10.14366/usg.14062Lavreniuk, M., Shelestov, A., Kussul, N., Rubel, O., Lukin, V., Egiazarian, K. Use of modified BM3D filter and CNN classifier for SAR data to improve crop classification accuracy (2019) 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, UKRCON 2019 - Proceedings, art. no. 8879805, pp. 1071-1076. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8869682 ISBN: 978-172813882-4 doi: 10.1109/UKRCON.2019.8879805Lu, L., Liang, Y., Xiao, Q., Yan, S. Evaluating fast algorithms for convolutional neural networks on FPGAs (Open Access) (2017) Proceedings - IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2017, art. no. 7966660, pp. 101-108. Cited 189 times. ISBN: 978-153864036-4 doi: 10.1109/FCCM.2017.64Meza, J., Contreras-Ortiz, S.H., Romero, L.A., Marrugo, A.G. Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light (Open Access) (2021) Optical Engineering, 60 (5), art. no. 054106. Cited 7 times. http://www.spie.org/x867.xml doi: 10.1117/1.OE.60.5.054106Meza, J., Romero, L.A., Marrugo, A.G. MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation (2021) IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1282-1290. Cited 2 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-166544899-4 doi: 10.1109/CVPRW53098.2021.00141Pei, S., Cong, S., Zhang, B., Liang, C., Zhang, L., Liu, J., Guo, Y., (...), Zhang, S. Diagnostic value of multimodal ultrasound imaging in differentiating benign and malignant TI-RADS category 4 nodules (2019) International Journal of Clinical Oncology, 24 (6), pp. 632-639. Cited 16 times. link.springer.de/link/service/journals/10147/index.htm doi: 10.1007/s10147-019-01397-yRouhi, R., Jafari, M. Classification of benign and malignant breast tumors based on hybrid level set segmentation (2016) Expert Systems with Applications, 46, pp. 45-59. Cited 54 times. doi: 10.1016/j.eswa.2015.10.011Rouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P. Benign and malignant breast tumors classification based on region growing and CNN segmentation (Open Access) (2015) Expert Systems with Applications, 42 (3), pp. 990-1002. Cited 304 times. doi: 10.1016/j.eswa.2014.09.020Sharifrazi, D., Alizadehsani, R., Roshanzamir, M., Joloudari, J.H., Shoeibi, A., Jafari, M., Hussain, S., (...), Acharya, U.R. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images (Open Access) (2021) Biomedical Signal Processing and Control, 68, art. no. 102622. Cited 89 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2021.102622Tripathi, P., Dass, R., Sen, J. A Comparative Analysis of Different Despeckling Filters Using Breast Ultrasonographic Images (2022) Lecture Notes in Electrical Engineering, 841, pp. 425-430. Cited 2 times. http://www.springer.com/series/7818 ISBN: 978-981168773-0 doi: 10.1007/978-981-16-8774-7_34Xie, X., Shi, F., Niu, J., Tang, X. Breast ultrasound image classification and segmentation using convolutional neural networks (2018) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11166 LNCS, pp. 200-211. Cited 28 times. https://www.springer.com/series/558 ISBN: 978-303000763-8 doi: 10.1007/978-3-030-00764-5_19Zhao, C., Wang, Q., Tao, X., Wang, M., Yu, C., Liu, S., Li, M., (...), Yang, M. Multimodal photoacoustic/ultrasonic imaging system: a promising imaging method for the evaluation of disease activity in rheumatoid arthritis (Open Access) (2021) European Radiology, 31 (5), pp. 3542-3552. Cited 14 times. www.link.springer.de/link/service/journals/00330/index.htm doi: 10.1007/s00330-020-07353-zhttp://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdfScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdfapplication/pdf166036https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/1/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf311953f9735e089c53d2d7134bc72f94MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdf.txtScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdf.txtExtracted texttext/plain2180https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/4/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf.txtd27d79316affd7ec3f82e3fa6eb0cd3bMD54THUMBNAILScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdf.jpgScopus - Document details - Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs.pdf.jpgGenerated Thumbnailimage/jpeg5679https://repositorio.utb.edu.co/bitstream/20.500.12585/12161/5/Scopus%20-%20Document%20details%20-%20Effect%20of%c2%a0Speckle%20Filtering%20in%c2%a0the%c2%a0Performance%20of%c2%a0Segmentation%20of%c2%a0Ultrasound%20Images%20Using%20CNNs.pdf.jpgc9cbf7c73346edb19f5e738ab0448efcMD5520.500.12585/12161oai:repositorio.utb.edu.co:20.500.12585/121612023-07-20 00:17:59.116Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=