Cyberattacks Predictions Workflow using Machine Learning

This research aims to validate the effectiveness of a machine learning model composed of three classifiers: decision tree, logistic regression, and support vector machines. Through the design of a workflow, we demonstrate the effectiveness of the model. First, we execute a network attack, and then m...

Full description

Autores:
Barrera Pérez, Carlos Eduardo
Serrano, Jairo E.
Martinez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12335
Acceso en línea:
https://hdl.handle.net/20.500.12585/12335
Palabra clave:
Denial-Of-Service Attack;
DDoS;
Attack
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c3364a5432ff62f5addf47058060f006
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12335
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Cyberattacks Predictions Workflow using Machine Learning
title Cyberattacks Predictions Workflow using Machine Learning
spellingShingle Cyberattacks Predictions Workflow using Machine Learning
Denial-Of-Service Attack;
DDoS;
Attack
LEMB
title_short Cyberattacks Predictions Workflow using Machine Learning
title_full Cyberattacks Predictions Workflow using Machine Learning
title_fullStr Cyberattacks Predictions Workflow using Machine Learning
title_full_unstemmed Cyberattacks Predictions Workflow using Machine Learning
title_sort Cyberattacks Predictions Workflow using Machine Learning
dc.creator.fl_str_mv Barrera Pérez, Carlos Eduardo
Serrano, Jairo E.
Martinez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Barrera Pérez, Carlos Eduardo
Serrano, Jairo E.
Martinez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Denial-Of-Service Attack;
DDoS;
Attack
topic Denial-Of-Service Attack;
DDoS;
Attack
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This research aims to validate the effectiveness of a machine learning model composed of three classifiers: decision tree, logistic regression, and support vector machines. Through the design of a workflow, we demonstrate the effectiveness of the model. First, we execute a network attack, and then monitoring, processing, storage, visualization, and data transfer tools are implemented to create the most realistic environment possible and obtain more accurate predictions. © 2021 IEEE.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:23:36Z
dc.date.available.none.fl_str_mv 2023-07-21T16:23:36Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Pérez, C. E. B., Serrano, J. E., & Martinez-Santos, J. C. (2021, December). Cyberattacks Predictions Workflow using Machine Learning. In 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT) (pp. 1-6). IEEE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12335
dc.identifier.doi.none.fl_str_mv 10.1109/ICMLANT53170.2021.9690527
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Pérez, C. E. B., Serrano, J. E., & Martinez-Santos, J. C. (2021, December). Cyberattacks Predictions Workflow using Machine Learning. In 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT) (pp. 1-6). IEEE.
10.1109/ICMLANT53170.2021.9690527
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12335
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Proceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/1/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/4/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/5/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpg
bitstream.checksum.fl_str_mv f6616f321fffcab769746b39e8af1452
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a93d84504af94172a8e5c5d037393580
75c1b75c9a75fdb44a4dd3bf1967d7eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021608533131264
spelling Barrera Pérez, Carlos Eduardoc0823acd-aa15-4c11-b009-58aa1307302eSerrano, Jairo E.858ddcba-7133-4518-bcf0-140fd228d579Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-07-21T16:23:36Z2023-07-21T16:23:36Z20212023Pérez, C. E. B., Serrano, J. E., & Martinez-Santos, J. C. (2021, December). Cyberattacks Predictions Workflow using Machine Learning. In 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT) (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1233510.1109/ICMLANT53170.2021.9690527Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis research aims to validate the effectiveness of a machine learning model composed of three classifiers: decision tree, logistic regression, and support vector machines. Through the design of a workflow, we demonstrate the effectiveness of the model. First, we execute a network attack, and then monitoring, processing, storage, visualization, and data transfer tools are implemented to create the most realistic environment possible and obtain more accurate predictions. © 2021 IEEE.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021Cyberattacks Predictions Workflow using Machine Learninginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Denial-Of-Service Attack;DDoS;AttackLEMBCartagena de IndiasEkanayake, N., Karunarathna, H., Miyuranga, R. (2020) What Is Cybersecurity: The Reality of Modern Threats, 1.Ibor, A., Obidinnu, J. System hardening architecture for safer access to critical business data (2015) Nigerian Journal of Technology, 34 (10), p. 788. Cited 3 times.Tripathi, N., Mehtre, B. (2013) Dos and Ddos Attacks: Impact, Analysis and Countermeasures, 12, pp. 1-6. Cited 17 times.Mijwil, M. (2015) History of Artificial Intelligence, 3, pp. 1-8. Cited 2 times. 04Choi, R.Y., Coyner, A.S., Kalpathy-Cramer, J., Chiang, M.F., Peter Campbell, J. Introduction to machine learning, neural networks, and deep learning (2020) Translational Vision Science and Technology, 9 (2), art. no. 14. Cited 185 times. http://tvst.arvojournals.org/article.aspx?articleid=2762344 doi: 10.1167/tvst.9.2.14Herńandez, J., Cajamarca, W. (2020) Modelos de Clasificación de Ataques de Reflexión DDoS Usando Técnicas de Machine LearningHerńandez, J., Cajamarca, W. (2020) Modelos de Clasificación de Ataques de Reflexión DDoS Usando Técnicas de Machine LearningÁlvarez Almeida, L., Martinez-Santos, J.C. SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks (2020) Advances in Intelligent Systems and Computing, 1067, pp. 380-389. http://www.springer.com/series/11156 ISBN: 978-303032032-4 doi: 10.1007/978-3-030-32033-1_35Banerjee, U., Vashishtha, A., Saxena, M. Evaluation of the capabilities of wireshark as a tool for intrusion detection (2010) International Journal of Computer Applications, 6 (7), pp. 1-5. Cited 38 times.Banerjee, U., Vashishtha, A., Saxena, M. Evaluation of the capabilities of wireshark as a tool for intrusion detection (2010) International Journal of Computer Applications, 6 (7), pp. 1-5. Cited 38 times.Bajer, M. Building an IoT data hub with elasticsearch, Logstash and Kibana (2017) Proceedings - 2017 5th International Conference on Future Internet of Things and Cloud Workshops, W-FiCloud 2017, 2017-January, pp. 63-68. Cited 56 times. ISBN: 978-153863281-9 doi: 10.1109/FiCloudW.2017.101Sanjappa, S., Ahmed, M. Analysis of logs by using logstash (2017) Advances in Intelligent Systems and Computing, 516, pp. 579-585. Cited 14 times. http://www.springer.com/series/11156 ISBN: 978-981103155-7 doi: 10.1007/978-981-10-3156-4_61Gormley, C., Tong, Z. (2015) Elasticsearch: The Definitive Guide: A Distributed Real-time Search and Analytics Engine.. Cited 395 times. "O'Reilly Media, Inc."Kúc, R., Rogozinski, M. (2016) ElasticSearch Server. Cited 25 times. Packt Publishing LtdAzarmi, B. (2017) Learning Kibana 5.0. Cited 3 times. Packt Publishing LtdSharafaldin, I., Lashkari, A.H., Hakak, S., Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy (2019) Proceedings - International Carnahan Conference on Security Technology, 2019-October, art. no. 8888419. Cited 359 times. ISBN: 978-172811576-4 doi: 10.1109/CCST.2019.8888419Álvarez Almeida, L.A. Data model classification based on machine learning techniques for detection of anomalous traffic (2019) Cartagena de IndiasAgnihotri, J., Phalnikar, R. Development of performance testing suite using apache JMeter (2018) Advances in Intelligent Systems and Computing, 673, pp. 317-326. Cited 4 times. http://www.springer.com/series/11156 ISBN: 978-981107244-4 doi: 10.1007/978-981-10-7245-1_32http://purl.org/coar/resource_type/c_6501ORIGINALCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdfCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdfapplication/pdf149648https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/1/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdff6616f321fffcab769746b39e8af1452MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdf.txtCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdf.txtExtracted texttext/plain2188https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/4/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txta93d84504af94172a8e5c5d037393580MD54THUMBNAILCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgCyberattacks Predictions Workflow using Machine Learning _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgGenerated Thumbnailimage/jpeg5985https://repositorio.utb.edu.co/bitstream/20.500.12585/12335/5/Cyberattacks%20Predictions%20Workflow%20using%20Machine%20Learning%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpg75c1b75c9a75fdb44a4dd3bf1967d7ebMD5520.500.12585/12335oai:repositorio.utb.edu.co:20.500.12585/123352023-07-22 00:18:06.33Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=