Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review

Perchlorate (ClO4−), which is a powerful endocrine disruptor affecting iodine fixation in the thyroid gland in humans and in biota, is a pollutant of natural and anthropogenic origin. For this reason, this pollutant must be eliminated from the ecosystems.It has been found in extreme environments suc...

Full description

Autores:
Acevedo-Barrios, Rosa
Puentes Martínez, Dainis
Hernández Rocha, Isis
Rubiano‑Labrador, Carolina
De la Parra‑Guerra, Ana
Carranza‑López, Liliana
Monroy‑Licht, Andrea
Leal, María Angelica
López, David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12721
Acceso en línea:
https://hdl.handle.net/20.500.12585/12721
Palabra clave:
Antarctica peninsula
Environmental pollutant
Environmental fate
Emerging pollutants
Extreme environments
Toxicity
Scopus
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c303213d17de7f3521d52cc669c994e2
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12721
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
title Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
spellingShingle Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
Antarctica peninsula
Environmental pollutant
Environmental fate
Emerging pollutants
Extreme environments
Toxicity
Scopus
LEMB
title_short Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
title_full Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
title_fullStr Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
title_full_unstemmed Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
title_sort Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review
dc.creator.fl_str_mv Acevedo-Barrios, Rosa
Puentes Martínez, Dainis
Hernández Rocha, Isis
Rubiano‑Labrador, Carolina
De la Parra‑Guerra, Ana
Carranza‑López, Liliana
Monroy‑Licht, Andrea
Leal, María Angelica
López, David
dc.contributor.author.none.fl_str_mv Acevedo-Barrios, Rosa
Puentes Martínez, Dainis
Hernández Rocha, Isis
Rubiano‑Labrador, Carolina
De la Parra‑Guerra, Ana
Carranza‑López, Liliana
Monroy‑Licht, Andrea
Leal, María Angelica
López, David
dc.subject.keywords.spa.fl_str_mv Antarctica peninsula
Environmental pollutant
Environmental fate
Emerging pollutants
Extreme environments
Toxicity
topic Antarctica peninsula
Environmental pollutant
Environmental fate
Emerging pollutants
Extreme environments
Toxicity
Scopus
LEMB
dc.subject.armarc.none.fl_str_mv Scopus
LEMB
description Perchlorate (ClO4−), which is a powerful endocrine disruptor affecting iodine fixation in the thyroid gland in humans and in biota, is a pollutant of natural and anthropogenic origin. For this reason, this pollutant must be eliminated from the ecosystems.It has been found in extreme environments such as Antarctica. ClO−reduction can be achieved with physicochemicaltreatments in small concentrations and through bacterial degradation. This is a cost-effective method, easy to implement,which makes it a viable method for the removal of perchlorate contamination in ecosystems. This review provides an updateddiscussion of reducing perchlorate contamination; that includes different perspectives of investigations related to its origin,use, effects on living beings; as well as the technologies used to eliminate this pollutant from the environment; its environmental fate in strategic ecosystems such as Antarctica in particular and astrobiological perspectives.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-19
dc.date.accessioned.none.fl_str_mv 2024-09-09T13:03:34Z
dc.date.available.none.fl_str_mv 2024-09-09T13:03:34Z
dc.date.submitted.none.fl_str_mv 2024-09-08
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Acevedo-Barrios, R., Puentes Martínez, D.A., Hernández Rocha, I.O. et al. Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-06004-w
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12721
dc.identifier.doi.none.fl_str_mv 10.1007/s13762-024-06004-w
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo-Barrios, R., Puentes Martínez, D.A., Hernández Rocha, I.O. et al. Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-06004-w
10.1007/s13762-024-06004-w
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12721
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv International Journal of Environmental Science and Technology
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/1/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/4/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/5/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdf.jpg
bitstream.checksum.fl_str_mv c07e0c702e40b7eee0b0ff380c3e2019
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
0cf1558de5d2e74f0b8551bfa65c63b3
87d332bd5406510f2448437d0adc04dc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1812096405598109696
spelling Acevedo-Barrios, Rosabcae3c53-60bb-47b1-bf6b-2a314645eb75Puentes Martínez, Dainisaae2cc6a-4841-4239-9f1a-ae2e97802eedHernández Rocha, Isisbda0ad7f-4448-42e6-92a2-9c4d03b33348Rubiano‑Labrador, Carolina31348231-1903-47c5-bddf-35cba55f443cDe la Parra‑Guerra, Ana2f56565b-2fe4-41f4-9f9f-6e062de7e221Carranza‑López, Lilianaa182130f-d9bd-47fc-8cf9-24e74840ebb5Monroy‑Licht, Andrea6ad73059-f2b4-482c-bfdf-16715c638b0eLeal, María Angelicac01f83b7-7ddf-4b83-88a1-c53e621c809dLópez, David43a50f47-eb06-4c05-99d5-c58e9aace3042024-09-09T13:03:34Z2024-09-09T13:03:34Z2022-08-192024-09-08Acevedo-Barrios, R., Puentes Martínez, D.A., Hernández Rocha, I.O. et al. Perchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a review. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-06004-whttps://hdl.handle.net/20.500.12585/1272110.1007/s13762-024-06004-wUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPerchlorate (ClO4−), which is a powerful endocrine disruptor affecting iodine fixation in the thyroid gland in humans and in biota, is a pollutant of natural and anthropogenic origin. For this reason, this pollutant must be eliminated from the ecosystems.It has been found in extreme environments such as Antarctica. ClO−reduction can be achieved with physicochemicaltreatments in small concentrations and through bacterial degradation. This is a cost-effective method, easy to implement,which makes it a viable method for the removal of perchlorate contamination in ecosystems. This review provides an updateddiscussion of reducing perchlorate contamination; that includes different perspectives of investigations related to its origin,use, effects on living beings; as well as the technologies used to eliminate this pollutant from the environment; its environmental fate in strategic ecosystems such as Antarctica in particular and astrobiological perspectives.Universidad Tecnológica de Bolívar18 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2International Journal of Environmental Science and TechnologyPerchlorate in antarctica, origin, effects, treatments, environmental fate, and astrobiological perspectives: a reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Antarctica peninsulaEnvironmental pollutantEnvironmental fateEmerging pollutantsExtreme environmentsToxicityScopusLEMBCartagena de IndiasCiencias BásicasCampus TecnológicoPúblico generalAcevedo-Barrios R, Sabater-Marco C, Olivero-Verbel J (2018) Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environ Sci Pollut Res 25:13697–13708. https:// doi. org/ 10. 1007/ s11356- 018- 1565-6Acevedo-Barrios R, Bertel-Sevilla A, Alonso-Molina J, Olivero-Verbel J (2019) Perchlorate-Reducing bacteria from hypersaline soils of the colombian caribbean. Int J Microbiol 2019:1–13. https:// doi. org/ 10. 1155/ 2019/ 69818 65Acevedo-Barrios R, Rubiano-Labrador C, Miranda-Castro W (2022a) Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environ Monit Assess 194:102. https:// doi. org/ 10. 1007/ s10661- 022- 09765-4Acevedo-Barrios R, Rubiano-Labrador C, Navarro-Narvaez D et al (2022b) Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194:654. https:// doi. org/ 10. 1007/ s10661- 022- 10328-wAcevedo-Barrios R, Olivero-Verbel J (2021) Perchlorate Contamination: Sources, Effects, and Technologies for Remediation. In: de Voogt P (ed) Reviews of Environmental Contamination and Toxicology Volume 256. Springer International Publishing, Cham, pp 103–120. https:// doi. org/ 10. 1007/ 398_ 2021_ 66Acevedo-Barrios RL, Hernández Rocha I, Puentes Martinez D, et al (2023) Psychrobacter sp: perchlorate reducing bacteria, isolated from marine sediments from Margarita Bay, Antarctica. LACCEI 1. https:// doi. org/ 10. 18687/ LACCE I2023.1. 1. 995Acevedo-Barrios R, Tirado-Ballestas I, Bertel-Sevilla A, et al (2024) Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation. https:// doi. org/ 10. 1007/ s10532- 024- 10079-0Alexandratos SD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48:388–398. https:// doi. org/ 10. 1021/ ie801 242vAli MM, Khater SA, Fayed AA et al (2021) Apoptotic endocrinal toxic effects of perchlorate in human placental cells. Toxicol Rep 8:863–870. https:// doi. org/ 10. 1016/j. toxrep. 2021. 04. 002Andrew Jackson W, Kumar Anandam S, Anderson T et al (2005) Perchlorate occurrence in the Texas Southern High Plains Aquifer System. Groundw Monit Remediat 25:137–149. https:// doi. org/ 10. 1111/j. 1745- 6592. 2005. 0009.xAranda-Rodriguez R, Lemieux F, Jin Z et al (2017) (Yet more) challenges for water treatment plants: potential contribution of hypochlorite solutions to bromate, chlorate, chlorite and perchlorate in drinking water. J Water Supply Res Technol-Aqua 66:621–631. https:// doi. org/ 10. 2166/ aqua. 2017. 147Archer PD, Sutter B, Ming DW, et al (2013) Possible Detection of Perchlorates by Evolved Gas Analysis of Rocknest Soils: Global Implication. The Woodlands, TX. https:// ntrs. nasa. gov/ citat ions/ 20130 009133Backus SM, Klawuun P, Brown S et al (2005) Determination of perchlorate in selected surface waters in the Great Lakes Basin by HPLC/MS/MS. Chemosphere 61:834–843. https:// doi. org/ 10. 1016/j. chemo sphere. 2005. 04. 054Baimenov A, Berillo DA, Poulopoulos SG, Inglezakis VJ (2020) A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 276:102088. https:// doi. org/ 10. 1016/j. cis. 2019. 102088Bardiya N, Bae JH (2011) Dissimilatory perchlorate reduction: a review. Microbiol Res 166:237–254. https:// doi. org/ 10. 1016/j. micres. 2010. 11. 005Blount BC, Özpinar A, Alwis KU et al (2008) Perchlorate, nitrate, thiocyanate, and iodide levels in chicken feed, water, and eggs from three farms. J Agric Food Chem 56:10709–10715. https:// doi. org/ 10. 1021/ jf801 8326Blount BC, Alwis KU, Jain RB et al (2010) Perchlorate, nitrate, and iodide intake through tap water. Environ Sci Technol 44:9564– 9570. https:// doi. org/ 10. 1021/ es102 5195Brown GM, Gu B (2006) The chemistry of perchlorate in the environment. Perchlorate Environ Occur Interact Treat 17–47. https:// doi. org/ 10. 1007/0- 387- 31113-0_2Bulaeva E, Lanctôt C, Reynolds L et al (2015) Sodium perchlorate disrupts development and affects metamorphosis- and growthrelated gene expression in tadpoles of the wood frog (Lithobates sylvaticus). Gen Comp Endocrinol 222:33–43. https:// doi. org/ 10. 1016/j. ygcen. 2015. 01. 012Byrne TM, Gu X, Hou P et al (2014) Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration. Carbon 73:1–12. https:// doi. org/ 10. 1016/j. carbon. 2014. 02. 020Calderon R, Palma P, Parker D et al (2014) Perchlorate levels in soil and waters from the Atacama Desert. Arch Environ Contam Toxicol 66:155–161. https:// doi. org/ 10. 1007/ s00244- 013- 9960-yCalderón R, Godoy F, Escudey M, Palma P (2017) A review of perchlorate (ClO4−) occurrence in fruits and vegetables. Environ Monit Assess 189:82. https:// doi. org/ 10. 1007/ s10661- 017- 5793-xCao F, Jaunat J, Sturchio N et al (2019) Worldwide occurrence and origin of perchlorate ion in waters: A review. Sci Total Environ 661:737–749. https:// doi. org/ 10. 1016/j. scito tenv. 2019. 01. 107Certini G, Karunatillake S, Zhao Y-YS et al (2020) Disambiguating the soils of Mars. Planet Space Sci 186:104922. https:// doi. org/ 10. 1016/j. pss. 2020. 104922Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fueled metabolism. Nat Rev Microbiol 2:569–580. https:// doi. org/ 10. 1038/ nrmic ro926Coates JD, Achenbach LA (2006) The Microbiology of Perchlorate Reduction and its Bioremediative Application. In: Gu B, Coates JD (eds) Perchlorate: Environmental Occurrence, Interactions and Treatment. Springer US, Boston, MA, pp 279–295. https:// doi. org/ 10. 1007/0- 387- 31113-0_ 12Cole-Dai J, Peterson KM, Kennedy JA et al (2018) Evidence of influence of human activities and volcanic eruptions on environmental perchlorate from a 300-year greenland ice core record. Environ Sci Technol 52:8373–8380. https:// doi. org/ 10. 1021/ acs. est. 8b018 90Constantinou P, Louca-Christodoulou D, Agapiou A (2019) LC-ESIMS/ MS determination of oxyhalides (chlorate, perchlorate and bromate) in food and water samples, and chlorate on household water treatment devices along with perchlorate in plants. Chemosphere 235:757–766. https:// doi. org/ 10. 1016/j. chemo sphere. 2019. 06. 180Cottin H, Kotler JM, Bartik K et al (2017) Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Sci Rev 209:1–42. https:// doi. org/ 10. 1007/ s11214- 015- 0196-1Crawford TZ, Kub AD, Peterson KM et al (2017) Reduced perchlorate in West Antarctica snow during stratospheric ozone hole. Antarct Sci 29:292–296. https:// doi. org/ 10. 1017/ S0954 10201 60007 05Dasgupta PK, Martinelango PK, Jackson WA et al (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575. https:// doi. org/ 10. 1021/ es048 612xDasSarma S, DasSarma P, Laye VJ, Schwieterman EW (2020) Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 24:31–41. https:// doi. org/ 10. 1007/ s00792- 019- 01126-3Dean KE, Palachek RM, Noel JM et al (2004) Development of freshwater water-quality criteria for perchlorate. Environ Toxicol Chem 23:1441–1451. https:// doi. org/ 10. 1897/ 02- 648Dohán O, De la Vieja A, Paroder V et al (2003) The Sodium/Iodide Symporter (NIS): Characterization, Regulation, and Medical Significance. Endocr Rev 24:48–77. https://d oi. org/ 10. 1210/ er. 2001- 0029Dohán O, Portulano C, Basquin C et al (2007) The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc Natl Acad Sci U S A 104:20250– 20255. https:// doi. org/ 10. 1073/ pnas. 07072 07104Dong H, Xiao K, Xian Y et al (2019) A novel approach for simultaneous analysis of perchlorate (ClO4−) and bromate (Br O3−) in fruits and vegetables using modified QuEChERS combined ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Chem 270:196–203. https:// doi. org/ 10. 1016/j. foodc hem. 2018. 07. 091Du Z, Xiao C, Furdui VI, Zhang W (2019) The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Sci Total Environ 656:1121–1132. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 11. 456Eguchi A, Kunisue T, Wu Q et al (2014) Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels. Arch Environ Contam Toxicol 67:29–41. https:// doi. org/ 10. 1007/ s00244- 014- 0021-yEisenberg TN, Middlebrooks EJ (2013) Reverse Osmosis Treatment of Drinking Water. Butterworth Publishers, Elsevier, Tennessee Technological University Cookeville, TennesseeEstrada NL, Böhlke JK, Sturchio NC et al (2017) Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data. Sci Total Environ 595:556– 566. https:// doi. org/ 10. 1016/j. scito tenv. 2017. 03. 223Fang Q, Chen B (2012) Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. Carbon 50:2209– 2219. https:// doi. org/ 10. 1016/j. carbon. 2012. 01. 036Fang C, Naidu R (2023) A review of perchlorate contamination: Analysis and remediation strategies. Chemosphere 338:139562. https:// doi. org/ 10. 1016/j. chemo sphere. 2023. 139562Friedmann EI (1982) Endolithic Microorganisms in the Antarctic Cold Desert. Science 215:1045–1053. https:// doi. org/ 10. 1126/ scien ce. 215. 4536. 1045Furdui VI, Zheng J, Furdui A (2018) Anthropogenic Perchlorate Increases since 1980 in the Canadian High Arctic. Environ Sci Technol 52:972–981. https:// doi. org/ 10. 1021/ acs. est. 7b031 32Gholamian F, Sheikh-Mohseni MA, Salavati-Niasari M (2011) Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Mater Sci Eng C 31:1688–1691. https:// doi. org/ 10. 1016/j. msec. 2011. 07. 017Gilichinsky D, Wilson G, Friedmann E et al (2007) Microbial Populations in Antarctic Permafrost: Biodiversity, State, Age, and Implication for Astrobiology. Astrobiology 7:275–311. https:// doi. org/ 10. 1089/ ast. 2006. 0012González Díaz DE, Mira Peinado SC (2021) Caracterización de bacterias tolerantes a la sal reductoras de perclorato provenientes de la isla Media Luna, Antártida. https:// utb. alma. exlib risgr oup. com/ view/ deliv ery/ 57UTB_ INST/ 12173 76980 005731Hartmann WK, Neukum G (2001) Cratering Chronology and the Evolution of Mars. In: Kallenbach R, Geiss J, Hartmann WK (eds) Chronology and Evolution of Mars. Springer Netherlands, Dordrecht, pp 165–194. https:// doi. org/ 10. 1007/ 978- 94- 017- 1035-0_6He H, Gao H, Chen G et al (2013) Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environ Sci Pollut Res Int 20:7301–7308. https:// doi. org/ 10. 1007/ s11356- 013- 1744-4Hecht MH, Kounaves SP, Quinn RC et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67. https:// doi. org/ 10. 1126/ scien ce. 11724 66Her N, Kim J, Yoon Y (2010) Perchlorate in dairy milk and milkbased powdered infant formula in South Korea. Chemosphere 81:732–737. https:// doi. org/ 10. 1016/j. chemo sphere. 2010. 07. 031Her N, Jeong H, Kim J, Yoon Y (2011) Occurrence of perchlorate in drinking water and seawater in South Korea. Arch Environ Contam Toxicol 61:166–172. https:// doi. org/ 10. 1007/ s00244- 010- 9616-0Hu J, Xian Y, Wu Y et al (2021) Perchlorate occurrence in foodstuffs and water: Analytical methods and technwater – A review. Food Chem 360:130146. https:// doi. org/ 10. 1016/j. foodc hem. 2021. 130146iques for removal fromHunten DM (1979) Possible oxidant sources in the atmosphere and surface of Mars. J Mol Evol 14:71–78. https:// doi. org/ 10. 1007/ BF017 32369Interstate Technology Regulatory Council (2005) Perchlorate: Overview of Issues, Status, and Remedial Options. Washington, DC. https:// itrcw eb. org/ viewd ocume nt/ perch lorate- overv iew- ofissues- st? Commu nityK ey= 0c358 b0a- a5b9- 4fd7- a832- 11888 551a1 53& tab= libra rydoc umentsItterheimová P, Bobacka J, Šindelář V, Lubal P (2022) Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[ 6]uril. Chemosensors 10:115. https:// doi. org/ 10. 3390/ chemo senso rs100 30115Jackson WA, Böhlke JK, Gu B et al (2010) Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environ Sci Technol 44:4869–4876. https:// doi. org/ 10. 1021/ es903 802jJackson WA, Davila AF, Estrada N et al (2012) Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta 98:19–30. https:// doi. org/ 10. 1016/j. gca. 2012. 09. 014Jackson WA, Böhlke JK, Andraski BJ et al (2015) Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim Cosmochim Acta 164:502–522. https:// doi. org/ 10. 1016/j. gca. 2015. 05. 016Jia W, Wang X, Wu X, Shi L (2022) Monitoring contamination of perchlorate migrating along the food chain to dairy products poses risks to human health. Food Chem 374:131633. https:// doi. org/ 10. 1016/j. foodc hem. 2021. 131633Jiang S, Li Y-S, Sun B (2013) Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method. Chin Chem Lett 24:311–314. https:// doi. org/ 10. 1016/j. cclet. 2013. 02. 011Jiang S, Cox TS, Cole-Dai J et al (2016) Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophys Res Lett 43:9913–9919. https:// doi. org/ 10. 1002/ 2016G L0702 03Jiang S, Cole-dai J, An C et al (2020) Spatial variability of perchlorate in East Antarctic surface snow : Implications for atmospheric production. Atmos Environ 238:117743. https:// doi. org/ 10. 1016/j. atmos env. 2020. 117743Jiang S, Shi G, Cole-Dai J et al (2021) Occurrence, latitudinal gradient and potential sources of perchlorate in the atmosphere across the hemispheres (31°N to 80°S). Environ Int 156:106611. https:// doi. org/ 10. 1016/j. envint. 2021. 106611Kannan K, Praamsma ML, Oldi JF et al (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76:22–26. https:// doi. org/ 10. 1016/j. chemo sphere. 2009. 02. 054Kim DH, Yoon Y, Baek K et al (2014) Occurrence of perchlorate in rice from different areas in the Republic of Korea. Environ Sci Pollut Res Int 21:1251–1257. https:// doi. org/ 10. 1007/ s11356- 013- 2013-2Kirk AB (2006) Environmental perchlorate: Why it matters. Anal Chim Acta 567:4–12. https:// doi. org/ 10. 1016/j. aca. 2006. 03. 047Kirk AB, Smith EE, Tian K et al (2003) Perchlorate in Milk. Environ Sci Technol 37:4979–4981. https:// doi. org/ 10. 1021/ es034 735qKoibuchi N, Chin WW (2000) Thyroid Hormone Action and Brain Development. Trends Endocrinol Metab 11:123–128. https:// doi. org/ 10. 1016/ S1043- 2760(00) 00238-1Koibuchi N (2018) Molecular Mechanisms of Thyroid Hormone Synthesis and Secretion. In: Belfiore A, LeRoith D (eds) Principles of Endocrinology and Hormone Action. SpringerInternational Publishing, Cham, pp 73–81. https:// doi. org/ 10. 1007/ 978-3- 319- 44675-2_5Kounaves SP, Stroble ST, Anderson RM et al (2010b) Discovery of Natural Perchlorate in the Antarctic Dry Valleys and Its Global Implications. Environ Sci Technol 44:2360–2364. https:// doi. org/ 10. 1021/ es903 3606Kounaves SP, Chaniotakis NA, Chevrier VF et al (2014) Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232:226–231. https:// doi. org/ 10. 1016/j. icarus. 2014. 01. 016Kounaves SP, Hecht MH, Kapit J, et al (2010a) Soluble sulfate in the martian soil at the Phoenix landing site. Geophys Res Lett 37:. https:// doi. org/ 10. 1029/ 2010G L0426 13Krishnan GR, Radhika R, Jayalatha T et al (2017) Removal of perchlorate from drinking water using granular activated carbon modified by acidic functional group: Adsorption kinetics and equilibrium studies. Process Saf Environ Prot 109:158–171. https:// doi. org/ 10. 1016/j. psep. 2017. 03. 014Kumar KS, Kavitha S, Parameswari K et al (2023) Environmental occurrence, toxicity and remediation of perchlorate – A review. Chemosphere 311:137017. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 137017Kumarathilaka P, Oze C, Indraratne SP, Vithanage M (2016) Perchlorate as an emerging contaminant in soil, water and food. Chemosphere 150:667–677. https:// doi. org/ 10. 1016/j. chemo sphere. 2016. 01. 109Laye VJ, DasSarma S (2018) An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts. Astrobiology 18:412–418. https:// doi. org/ 10. 1089/ ast. 2017. 1766Lee J-W, Oh S-H, Oh J-E (2012) Monitoring of perchlorate in diverse foods and its estimated dietary exposure for Korea populations. J Hazard Mater 243:52–58. https:// doi. org/ 10. 1016/j. jhazm at. 2012. 09. 037Li M, Xiao M, Xiao Q et al (2022) Perchlorate and chlorate in breast milk, infant formulas, baby supplementary food and the implications for infant exposure. Environ Int 158:106939. https:// doi. org/ 10. 1016/j. envint. 2021. 106939Li X, Li J, Li K et al (2023) Effects of perchlorate and exogenous T4 exposures on body condition and endochondral ossification of Rana chensinensis tadpoles. Aquat Toxicol 265:106767. https:// doi. org/ 10. 1016/j. aquat ox. 2023. 106767Llorente-Esteban A, Manville RW, Reyna-Neyra A et al (2020) Allosteric regulation of mammalian Na+/I− symporter activity by perchlorate. Nat Struct Mol Biol 27:533–539. https:// doi. org/ 10. 1038/ s41594- 020- 0417-5Lu S, Jing X, Liu J et al (2013) Synthesis of porous sheet-like Co3O4 microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate. J Solid State Chem 197:345–351. https:// doi. org/ 10. 1016/j. jssc. 2012. 09. 020Maffini MV, Trasande L, Neltner TG (2016) Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Curr Environ Health Rep 3:107–117. https:// doi. org/ 10. 1007/ s40572- 016- 0090-3Mahmudov R, Huang CP (2010) Perchlorate removal by activated carbon adsorption. Sep Purif Technol 70:329–337. https:// doi. org/ 10. 1016/j. seppur. 2009. 10. 016Martins Z, Cottin H, Kotler JM et al (2017) Earth as a Tool for Astrobiology— A European Perspective. Space Sci Rev 209:43–81. https:// doi. org/ 10. 1007/ s11214- 017- 0369-1Meeßen J, Wuthenow P, Schille P et al (2015) Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability. Astrobiology 15:601–615. https:// doi. org/ 10. 1089/ ast. 2015. 1281Melnyk RA, Coates JD (2015) The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer. BMC Genomics 16:862. https:// doi. org/ 10. 1186/ s12864- 015- 2011-5Mier López M, Ibáñez Mendizábal R, Ortiz Uribe I, Rivero Martínez MJ (2004) Electrodiálisis con membranas bipolares: fundamentos y aplicaciones. Ing Quím 166–182. https:// dialn et. uniri oja. es/ servl et/ artic ulo? codigo= 10660 23Minicozzi MR, von Hippel FA, Furin CG, Buck CL (2019) Sodium perchlorate induces non-alcoholic fatty liver disease in developing stickleback. Environ Pollut 251:390–399. https:// doi. org/ 10. 1016/j. envpol. 2019. 05. 001Moreno JC, Klootwijk W, van Toor H et al (2008) Mutations in the Iodotyrosine Deiodinase Gene and Hypothyroidism. N Engl J Med 358:1811–1818. https:// doi. org/ 10. 1056/ NEJMo a0706 819Muñi A, Páez G, Faría J, et al (2005) Eficiencia de un sistema de ultrafiltración/ nanofiltración tangencial en serie para el fraccionamiento y concentración del lactosuero. Rev Científica XV:361–367. https:// www. redal yc. org/ artic ulo. oa? id= 95915 410Murray CW, Bolger PM (2014) Environmental Contaminants: Perchlorate. In: Motarjemi Y (ed) Encyclopedia of Food Safety. Academic Press, Waltham, pp 337–341. https:// doi. org/ 10. 1016/ B978-0- 12- 378612- 8. 00200-6Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med 235:424–433. https:// doi. org/ 10. 1258/ ebm. 2009. 009241Oze C, Beisel J, Dabsys E et al (2021) Perchlorate and Agriculture on Mars. Soil Syst 5:37. https:// doi. org/ 10. 3390/ soils ystem s5030 037Parvez SM, Jahan F, Brune M-N et al (2021) Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health 5:e905–e920. https:// doi. org/ 10. 1016/ S2542- 5196(21) 00263-1Petersen AM, Dillon D, Bernhardt RR et al (2015) Perchlorate Disrupts Embryonic Androgen Synthesis and Reproductive Development in Threespine Stickleback without Changing Whole-Body Levels of Thyroid Hormone. General and Comparative Endocrinology 210:130–144. https:// doi. org/ 10. 1016/j. ygcen. 2014. 10. 015Pleus RC, Corey LM (2018) Environmental exposure to perchlorate: A review of toxicology and human health. Toxicol Appl Pharmacol 358:102–109. https:// doi. org/ 10. 1016/j. taap. 2018. 09. 001Quinn RC, Martucci HFH, Miller SR et al (2013) Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity. Astrobiology 13:515–520. https:// doi. org/ 10. 1089/ ast. 2013. 0999Rao B, Anderson TA, Redder A, Jackson WA (2010) Perchlorate Formation by Ozone Oxidation of Aqueous Chlorine/Oxy-Chlorine Species: Role of ClxOy Radicals. Environ Sci Technol 44:2961– 2967. https:// doi. org/ 10. 1021/ es903 065fReh B, Wang X, Feng Y, Bhandari RK (2022) Potassium perchlorate effects on primordial germ cells of developing medaka larvae. Aquat Toxicol 251:106283. https:// doi. org/ 10. 1016/j. aquat ox. 2022. 106283Sanchez-Hernandez JC (2006) Earthworm biomarkers in ecological risk assessment. Rev Environ Contam Toxicol 188:85–126. https:// doi. org/ 10. 1007/ 978-0- 387- 32964-2_3Schirmack J, Alawi M, Wagner D (2015) Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 6:210. https:// doi. org/ 10. 3389/ fmicb. 2015. 00210Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 264:128455. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 128455Shtarkman YM, Koçer ZA, Edgar R et al (2013) Subglacial Lake Vostok (Antarctica) Accretion Ice Contains aSequences from Aquatic, Marine and Sediment-Inhabiting Bacteria and Eukarya. PLoS ONE 8:e67221. https:// doi. org/ 10. 1371/ journ al. pone. 00672 21 Diverse Set ofSijimol MR, Jyothy S, Pradeepkumar AP et al (2015) Review on Fate, Toxicity, and Remediation of Perchlorate. Environ Forensics 16:125–134. https:// doi. org/ 10. 1080/ 15275 922. 2015. 10229 14Song W, Gao B, Wang H et al (2017) The rapid adsorption-microbial reduction of perchlorate from aqueous solution by novel aminecrosslinked magnetic biopolymer resin. Bioresour Technol 240:68–76. https:// doi. org/ 10. 1016/j. biort ech. 2017. 03. 064Spitzweg C, Joba W, Schriever K et al (1999) Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J Clin Endocrinol Metab 84:4178–4184. https:// doi. org/ 10. 1210/ jcem. 84. 11. 6117Srinivasan R, Sorial GA (2009) Treatment of perchlorate in drinking water: A critical review. Sep Purif Technol 69:7–21. https:// doi. org/ 10. 1016/j. seppur. 2009. 06. 025Stamenković V, Ward LM, Mischna M, Fischer WW (2018) O2 solubility in Martian near-surface environments and implications for aerobic life. Nat Geosci 11:905–909. https:// doi. org/ 10. 1038/ s41561- 018- 0243-0Sunilkumar U, Lal S (2021) Perchlorate Reducing Bacteria And Their Insight Towards Astrobiology. IJRAR 8:1. https:// doi. org/ 10. 13140/ RG.2. 2. 26997. 70880Ting W-P, Lu M-C, Huang Y-H (2008) The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J Hazard Mater 156:421–427. https:// doi. org/ 10. 1016/j. jhazm at. 2007. 12. 031Trumpolt CW, Crain M, Cullison GD et al (2005) Perchlorate: Sources, uses, and occurrences in the environment. Remediat J 16:65–89. https:// doi. org/ 10. 1002/ rem. 20071United States Environmental Protection Agency (USEPA) (2008) Interim Drinking Water Health Advisory For Perchlorate. Health and Ecological Criteria Division Office of Science and Technology Office of Water; U.S. Environmental Protection Agency Washington, Washington, D. C. https:// www. epa. gov/ sites/ defau lt/ files/ 2019- 03/ docum ents/ inter im- dw- perch lorate. pdfUnited States Environmental Protection Agency (USEPA) (2009) Revised Assessment Guidance for Perchlorate. Office of solid waste and emergency response, Washington, D. C. https:// www. epa. gov/ fedfac/ revis ed- asses sment- guida nce- perch lorateVega M, Nerenberg R, Vargas IT (2018) Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environ Res 164:316–326. https:// doi. org/ 10. 1016/j. envres. 2018. 02. 034Visser WE, Friesema ECH, Visser TJ (2011) Minireview: Thyroid Hormone Transporters: The Knowns and the Unknowns. Mol Endocrinol 25:1–14. https:// doi. org/ 10. 1210/ me. 2010- 0095Wang Z, Forsyth D, Lau BP et al (2009) Estimated dietary exposure of Canadians to perchlorate through the consumption of fruits and vegetables available in Ottawa markets. J Agric Food Chem 57:9250–9255. https:// doi. org/ 10. 1021/ jf901 910xWang Z, Gao M, Zhang Y et al (2014) Perchlorate reduction by hydrogen autotrophic bacteria in a bioelectrochemical reactor.J Environ Manage 142:10–16. https:// doi. org/ 10. 1016/j. jenvm an. 2014. 04. 003Wémeau J-L, Kopp P (2017) Pendred syndrome. Best Pract Res Clin Endocrinol Metab 31:213–224. https:// doi. org/ 10. 1016/j. beem. 2017. 04. 011Wu Q, Zhang T, Sun H, Kannan K (2010) Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts. Arch Environ Contam Toxicol 58:543–550. https:// doi. org/ 10. 1007/ s00244- 010- 9485-6Wu Q, Oldi JF, Kannan K (2011) Fate of perchlorate in a man-made reflecting pond following a fireworks display in Albany, New York, USA. Environ Toxicol Chem 30:2449–2455. https:// doi. org/ 10. 1002/ etc. 648Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075. https:// doi. org/ 10. 1016/ S0032- 0633(00) 00080-5Xie Y, Ren L, Zhu X et al (2018) Physical and chemical treatments for removal of perchlorate from water–A review. Process Saf Environ Prot 116:180–198. https:// doi. org/ 10. 1016/j. psep. 2018. 02. 009Xie Y, Cai X, Liu W, Deng W (2009) [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides]. Huan Jing Ke Xue Huanjing Kexue 30:2425–2431. https:// europ epmc. org/ artic le/ med/ 19799 312Yang M, Her N (2011) Perchlorate in Soybean Sprouts (Glycine max L. Merr.), Water Dropwort (Oenanthe stolonifera DC.), and Lotus (Nelumbo nucifera Gaertn.) Root in South Korea. J Agric Food Chem 59:7490–7495. https:// doi. org/ 10. 1021/ jf200 963Yao F, Zhong Y, Yang Q et al (2017) Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. J Hazard Mater 323:602–610. https:// doi. org/ 10. 1016/j. jhazm at. 2016. 08. 052Ye L, You H, Yao J, Su H (2012) Water treatment technologies for perchlorate: A review. Desalination 298:1–12. https:// doi. org/ 10. 1016/j. desal. 2012. 05. 006Yen AS, Kim SS, Hecht MH et al (2000) Evidence That the Reactivity of the Martian Soil Is Due to Superoxide Ions. Science 289:1909–1912. https:// doi. org/ 10. 1126/ scien ce. 289. 5486. 1909Yu J, Dong H-W, Shi L-T et al (2019) Reproductive toxicity of perchlorate in rats. Food Chem Toxicol 128:212–222. https:// doi. org/ 10. 1016/j. fct. 2019. 04. 014Zhang T, Wu Q, Sun HW et al (2010) Perchlorate and Iodide in Whole Blood Samples from Infants, Children, and Adults in Nanchang, China. Environ Sci Technol 44:6947–6953. https:// doi. org/ 10. 1021/ es101 354gZoeller RT (2021) Chapter Ten - Endocrine disrupting chemicals and thyroid hormone action. In: Vandenberg LN, Turgeon JL (eds) Advances in Pharmacology. Academic Press, pp 401–417. https:// doi. org/ 10. 1016/ bs. apha. 2021. 05. 002http://purl.org/coar/resource_type/c_dcae04bcORIGINALs13762-024-06004-w Review Perclorato en la Antártida.pdfs13762-024-06004-w Review Perclorato en la Antártida.pdfArticulo principalapplication/pdf1483955https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/1/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdfc07e0c702e40b7eee0b0ff380c3e2019MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTs13762-024-06004-w Review Perclorato en la Antártida.pdf.txts13762-024-06004-w Review Perclorato en la Antártida.pdf.txtExtracted texttext/plain97153https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/4/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdf.txt0cf1558de5d2e74f0b8551bfa65c63b3MD54THUMBNAILs13762-024-06004-w Review Perclorato en la Antártida.pdf.jpgs13762-024-06004-w Review Perclorato en la Antártida.pdf.jpgGenerated Thumbnailimage/jpeg8448https://repositorio.utb.edu.co/bitstream/20.500.12585/12721/5/s13762-024-06004-w%20Review%20Perclorato%20en%20la%20Ant%c3%a1rtida.pdf.jpg87d332bd5406510f2448437d0adc04dcMD5520.500.12585/12721oai:repositorio.utb.edu.co:20.500.12585/127212024-09-10 00:15:30.33Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=