An automatic approach to generate corpus in Spanish
A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipe...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8916
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8916
- Palabra clave:
- Corpus
Knowledge extraction
Linguistic computational
Natural language processing
Text mining
Data mining
Extraction
Natural language processing systems
Tellurium compounds
Websites
Automatic approaches
Corpus
Digital information
Knowledge extraction
Linguistic resources
Propagation algorithm
Text mining
Wikipedia
Linguistics
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_c2a42ebab902e899d27864e627f506a3 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8916 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
An automatic approach to generate corpus in Spanish |
title |
An automatic approach to generate corpus in Spanish |
spellingShingle |
An automatic approach to generate corpus in Spanish Corpus Knowledge extraction Linguistic computational Natural language processing Text mining Data mining Extraction Natural language processing systems Tellurium compounds Websites Automatic approaches Corpus Digital information Knowledge extraction Linguistic resources Propagation algorithm Text mining Wikipedia Linguistics |
title_short |
An automatic approach to generate corpus in Spanish |
title_full |
An automatic approach to generate corpus in Spanish |
title_fullStr |
An automatic approach to generate corpus in Spanish |
title_full_unstemmed |
An automatic approach to generate corpus in Spanish |
title_sort |
An automatic approach to generate corpus in Spanish |
dc.contributor.editor.none.fl_str_mv |
Serrano C. J.E. Martínez-Santos, Juan Carlos |
dc.subject.keywords.none.fl_str_mv |
Corpus Knowledge extraction Linguistic computational Natural language processing Text mining Data mining Extraction Natural language processing systems Tellurium compounds Websites Automatic approaches Corpus Digital information Knowledge extraction Linguistic resources Propagation algorithm Text mining Wikipedia Linguistics |
topic |
Corpus Knowledge extraction Linguistic computational Natural language processing Text mining Data mining Extraction Natural language processing systems Tellurium compounds Websites Automatic approaches Corpus Digital information Knowledge extraction Linguistic resources Propagation algorithm Text mining Wikipedia Linguistics |
description |
A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipedia and web pages. The information extracted by Wikipedia is done by delimiting the domain, using a propagation algorithm to determine the categories associated with a domain region and a set of seeds to delimit the search. The information extracted from the web pages is carried out efficiently, determining the patterns associated with the structure of each page with the purpose of defining the quality of the extraction. © Springer Nature Switzerland AG 2018. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Communications in Computer and Information Science; Vol. 885, pp. 150-161 |
dc.identifier.isbn.none.fl_str_mv |
9783319989976 |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8916 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-98998-3_12 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57202285682 8738428200 57194828933 57203852380 |
identifier_str_mv |
Communications in Computer and Information Science; Vol. 885, pp. 150-161 9783319989976 18650929 10.1007/978-3-319-98998-3_12 Universidad Tecnológica de Bolívar Repositorio UTB 57202285682 8738428200 57194828933 57203852380 |
url |
https://hdl.handle.net/20.500.12585/8916 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
26 September 2018 through 28 September 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054377708&doi=10.1007%2f978-3-319-98998-3_12&partnerID=40&md5=d8689ca7ab863965c5539711ded485c1 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
13th Colombian Conference on Computing, CCC 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8916/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021650522308608 |
spelling |
Serrano C. J.E.Martínez-Santos, Juan CarlosPuertas E.Alvarado‑Valencia, Jorge AndresMoreno-Sandoval L.G.Pomares-Quimbaya A.2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Communications in Computer and Information Science; Vol. 885, pp. 150-161978331998997618650929https://hdl.handle.net/20.500.12585/891610.1007/978-3-319-98998-3_12Universidad Tecnológica de BolívarRepositorio UTB5720228568287384282005719482893357203852380A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipedia and web pages. The information extracted by Wikipedia is done by delimiting the domain, using a propagation algorithm to determine the categories associated with a domain region and a set of seeds to delimit the search. The information extracted from the web pages is carried out efficiently, determining the patterns associated with the structure of each page with the purpose of defining the quality of the extraction. © Springer Nature Switzerland AG 2018.Pontificia Universidad JaverianaAcknowledgements. The tool presented was carried out within the construction of research capabilities of the Center for Excellence and Appropriation in Big Data and Data Analytics (CAOBA), led by the Pontificia Universidad Javeriana, funded by the Ministry of Information Technologies and Telecommunications of the Republic of Colombia (MinTIC).Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054377708&doi=10.1007%2f978-3-319-98998-3_12&partnerID=40&md5=d8689ca7ab863965c5539711ded485c113th Colombian Conference on Computing, CCC 2018An automatic approach to generate corpus in Spanishinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCorpusKnowledge extractionLinguistic computationalNatural language processingText miningData miningExtractionNatural language processing systemsTellurium compoundsWebsitesAutomatic approachesCorpusDigital informationKnowledge extractionLinguistic resourcesPropagation algorithmText miningWikipediaLinguistics26 September 2018 through 28 September 2018Arnold, P., Rahm, E., Automatic extraction of semantic relations from wikipedia (2015) Int. J. Artif. Intell. Tools, 24 (2)Berners-Lee, T., Connolly, D., (1995) Hypertext Markup Language-2.0, , Technical report, USABlei, D.M., Ng, A.Y., Jordan, M.I., Latent dirichlet allocation (2003) J. Mach. Learn. Res, 3, pp. 993-1022. , Jan(2006) Extensible Markup Language (Xml) 1.1Crawford, W., Csomay, E., Doing Corpus Linguistics (2015) Routledge, , AbingdonCrockford, D., (2006) The Application/Json Media Type for Javascript Object Notation, , JSONDrechsler, A., Hevner, A., A four-cycle model of is design science research: Capturing the dynamic nature of is artifact design (2016) Breakthroughs and Emerging Insights from Ongoing Design Science Projects: Research-In-Progress Papers and Poster Presentations from the 11Th International Conference on Design Science Research in Information Systems and Technology (DESRIST). DESRIST 2016, , St. John, CanadaDutta, B., Chatterjee, U., Madalli, D.P., YAMO: Yet another methodology for large-scale faceted ontology construction (2015) J. Knowl. Manag., 19 (1), pp. 6-24Edeki, C., Agile unified process (2013) Int. J. Comput. Sci., 1 (3), pp. 13-17Fan, J., Kalyanpur, A., Gondek, D.C., Ferrucci, D.A., Automatic knowledge extraction from documents (2012) IBM J. Res. Dev., 56 (3), pp. 1-5Ferrara, E., de Meo, P., Fiumara, G., Baumgartner, R., Web data extraction, applications and techniques: A survey (2014) Knowl.-Based Syst., 70, pp. 301-323Gharib, T.F., Badr, N.L., Haridy, S., Abraham, A., Enriching ontology concepts based on texts from WWW and corpus (2012) J. UCS, 18 (16), pp. 2234-2251Jiang, J., Information extraction from text (2012) Mining Text Data, pp. 11-41. , https://doi.org/10.1007/978-1-4614-3223-42, Aggarwal, C., Zhai, C. (eds.), Springer, BostonJurafsky, D., Martin, J.H., Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2009) Prentice Hall Series in Artificial Intelligence, pp. 1-1024Kanakaraj, M., Kamath, S.S., NLP based intelligent news search engine using information extraction from e-newspapers (2014) 2014 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5. , IEEEKanavos, A., Makris, C., Plegas, Y., Theodoridis, E., Ranking web search results exploiting wikipedia (2016) Int. J. Artif. Intell. Tools, 25 (3)Kozareva, Z., Hovy, E., Tailoring the automated construction of large-scale taxonomies using the web (2013) Lang. Resour. Eval., 47 (3), pp. 859-890Küçük, D., Arslan, Y., Semi-automatic construction of a domain ontology for wind energy using wikipedia articles (2014) Renew. Energy, 62, pp. 484-489Lahbib, W., Bounhas, I., Slimani, Y., Arabic terminology extraction and enrichment based on domain-specific text mining (2015) 2015 IEEE 27Th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 340-347. , IEEELeskovec, J., Rajaraman, A., Ullman, J.D., (2014) Mining of Massive Datasets, , Cambridge University Press, CambridgeLiu, S., Zhang, C., Termhood-based comparability metrics of comparable corpus in special domain (2013) CLSW 2012. LNCS (LNAI), 7717, pp. 134-144. , https://doi.org/10.1007/978-3-642-36337-515, Ji, D., Xiao, G. (eds.), Springer, HeidelbergLoria, S., TextBlob: Simplified text processing (2014) Secondary Textblob: Simplified Text ProcessingMarch, S.T., Smith, G.F., Design and natural science research on information technology (1995) Decis. Support Syst., 15 (4), pp. 251-266March, S.T., Storey, V.C., Design science in the information systems discipline: An introduction to the special issue on design science research (2008) MIS Q, 32, pp. 725-730Medelyan, O., Witten, I.H., Divoli, A., Broekstra, J., Automatic construction of lexicons, taxonomies, ontologies, and other knowledge structures (2013) Wiley Interdisc. Rev.: Data Min. Knowl. Discov., 3 (4), pp. 257-279Morell, M.F., The Wikimedia foundation and the governance of Wikipedias infrastructure: Historical trajectories and its hybrid character (2011) Critical Point of View: A Wikipedia Reader, pp. 325-341Petrov, S., Das, D., McDonald, R., (2011) A Universal Part-Of-Speech TagsetPowers, D.M.W., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation (2011) J. Mach. Learn. Technol., 2 (1), pp. 37-63Richardson, L., Ruby, S., (2008) Restful Web Services, , O’Reilly Media, Inc., SebastopolSchwaber, K., Beedle, M., (2002) Agile Software Development with Scrum, 1. , Prentice Hall, Upper Saddle RiverVállez, M., Pedraza-Jiménez, R., Codina, L., Blanco, S., Rovira, C., A semiautomatic indexing system based on embedded information in HTML documents (2015) Library Hi Tech, 33 (2), pp. 195-210van Rossum, G., Drake, F.L., Python Language Reference Manual (2003) Network Theory, , BristolWood, L., Nicol, G., Robie, J., Champion, M., Byrne, S., (2004) Document Object Model (DOM) Level 3 Core SpecificationZhu, M., Recall, precision and average precision (2004) Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, 2, p. 30http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8916/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8916oai:repositorio.utb.edu.co:20.500.12585/89162023-05-26 16:29:53.548Repositorio Institucional UTBrepositorioutb@utb.edu.co |