An automatic approach to generate corpus in Spanish

A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipe...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8916
Acceso en línea:
https://hdl.handle.net/20.500.12585/8916
Palabra clave:
Corpus
Knowledge extraction
Linguistic computational
Natural language processing
Text mining
Data mining
Extraction
Natural language processing systems
Tellurium compounds
Websites
Automatic approaches
Corpus
Digital information
Knowledge extraction
Linguistic resources
Propagation algorithm
Text mining
Wikipedia
Linguistics
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c2a42ebab902e899d27864e627f506a3
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8916
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv An automatic approach to generate corpus in Spanish
title An automatic approach to generate corpus in Spanish
spellingShingle An automatic approach to generate corpus in Spanish
Corpus
Knowledge extraction
Linguistic computational
Natural language processing
Text mining
Data mining
Extraction
Natural language processing systems
Tellurium compounds
Websites
Automatic approaches
Corpus
Digital information
Knowledge extraction
Linguistic resources
Propagation algorithm
Text mining
Wikipedia
Linguistics
title_short An automatic approach to generate corpus in Spanish
title_full An automatic approach to generate corpus in Spanish
title_fullStr An automatic approach to generate corpus in Spanish
title_full_unstemmed An automatic approach to generate corpus in Spanish
title_sort An automatic approach to generate corpus in Spanish
dc.contributor.editor.none.fl_str_mv Serrano C. J.E.
Martínez-Santos, Juan Carlos
dc.subject.keywords.none.fl_str_mv Corpus
Knowledge extraction
Linguistic computational
Natural language processing
Text mining
Data mining
Extraction
Natural language processing systems
Tellurium compounds
Websites
Automatic approaches
Corpus
Digital information
Knowledge extraction
Linguistic resources
Propagation algorithm
Text mining
Wikipedia
Linguistics
topic Corpus
Knowledge extraction
Linguistic computational
Natural language processing
Text mining
Data mining
Extraction
Natural language processing systems
Tellurium compounds
Websites
Automatic approaches
Corpus
Digital information
Knowledge extraction
Linguistic resources
Propagation algorithm
Text mining
Wikipedia
Linguistics
description A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipedia and web pages. The information extracted by Wikipedia is done by delimiting the domain, using a propagation algorithm to determine the categories associated with a domain region and a set of seeds to delimit the search. The information extracted from the web pages is carried out efficiently, determining the patterns associated with the structure of each page with the purpose of defining the quality of the extraction. © Springer Nature Switzerland AG 2018.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 885, pp. 150-161
dc.identifier.isbn.none.fl_str_mv 9783319989976
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8916
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-98998-3_12
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57202285682
8738428200
57194828933
57203852380
identifier_str_mv Communications in Computer and Information Science; Vol. 885, pp. 150-161
9783319989976
18650929
10.1007/978-3-319-98998-3_12
Universidad Tecnológica de Bolívar
Repositorio UTB
57202285682
8738428200
57194828933
57203852380
url https://hdl.handle.net/20.500.12585/8916
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 26 September 2018 through 28 September 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054377708&doi=10.1007%2f978-3-319-98998-3_12&partnerID=40&md5=d8689ca7ab863965c5539711ded485c1
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 13th Colombian Conference on Computing, CCC 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8916/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021650522308608
spelling Serrano C. J.E.Martínez-Santos, Juan CarlosPuertas E.Alvarado‑Valencia, Jorge AndresMoreno-Sandoval L.G.Pomares-Quimbaya A.2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Communications in Computer and Information Science; Vol. 885, pp. 150-161978331998997618650929https://hdl.handle.net/20.500.12585/891610.1007/978-3-319-98998-3_12Universidad Tecnológica de BolívarRepositorio UTB5720228568287384282005719482893357203852380A corpus is an indispensable linguistic resource for any application of natural language processing. Some corpora have been created manually or semi-automatically for a specific domain. In this paper, we present an automatic approach to generate corpus from digital information sources such as Wikipedia and web pages. The information extracted by Wikipedia is done by delimiting the domain, using a propagation algorithm to determine the categories associated with a domain region and a set of seeds to delimit the search. The information extracted from the web pages is carried out efficiently, determining the patterns associated with the structure of each page with the purpose of defining the quality of the extraction. © Springer Nature Switzerland AG 2018.Pontificia Universidad JaverianaAcknowledgements. The tool presented was carried out within the construction of research capabilities of the Center for Excellence and Appropriation in Big Data and Data Analytics (CAOBA), led by the Pontificia Universidad Javeriana, funded by the Ministry of Information Technologies and Telecommunications of the Republic of Colombia (MinTIC).Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054377708&doi=10.1007%2f978-3-319-98998-3_12&partnerID=40&md5=d8689ca7ab863965c5539711ded485c113th Colombian Conference on Computing, CCC 2018An automatic approach to generate corpus in Spanishinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCorpusKnowledge extractionLinguistic computationalNatural language processingText miningData miningExtractionNatural language processing systemsTellurium compoundsWebsitesAutomatic approachesCorpusDigital informationKnowledge extractionLinguistic resourcesPropagation algorithmText miningWikipediaLinguistics26 September 2018 through 28 September 2018Arnold, P., Rahm, E., Automatic extraction of semantic relations from wikipedia (2015) Int. J. Artif. Intell. Tools, 24 (2)Berners-Lee, T., Connolly, D., (1995) Hypertext Markup Language-2.0, , Technical report, USABlei, D.M., Ng, A.Y., Jordan, M.I., Latent dirichlet allocation (2003) J. Mach. Learn. Res, 3, pp. 993-1022. , Jan(2006) Extensible Markup Language (Xml) 1.1Crawford, W., Csomay, E., Doing Corpus Linguistics (2015) Routledge, , AbingdonCrockford, D., (2006) The Application/Json Media Type for Javascript Object Notation, , JSONDrechsler, A., Hevner, A., A four-cycle model of is design science research: Capturing the dynamic nature of is artifact design (2016) Breakthroughs and Emerging Insights from Ongoing Design Science Projects: Research-In-Progress Papers and Poster Presentations from the 11Th International Conference on Design Science Research in Information Systems and Technology (DESRIST). DESRIST 2016, , St. John, CanadaDutta, B., Chatterjee, U., Madalli, D.P., YAMO: Yet another methodology for large-scale faceted ontology construction (2015) J. Knowl. Manag., 19 (1), pp. 6-24Edeki, C., Agile unified process (2013) Int. J. Comput. Sci., 1 (3), pp. 13-17Fan, J., Kalyanpur, A., Gondek, D.C., Ferrucci, D.A., Automatic knowledge extraction from documents (2012) IBM J. Res. Dev., 56 (3), pp. 1-5Ferrara, E., de Meo, P., Fiumara, G., Baumgartner, R., Web data extraction, applications and techniques: A survey (2014) Knowl.-Based Syst., 70, pp. 301-323Gharib, T.F., Badr, N.L., Haridy, S., Abraham, A., Enriching ontology concepts based on texts from WWW and corpus (2012) J. UCS, 18 (16), pp. 2234-2251Jiang, J., Information extraction from text (2012) Mining Text Data, pp. 11-41. , https://doi.org/10.1007/978-1-4614-3223-42, Aggarwal, C., Zhai, C. (eds.), Springer, BostonJurafsky, D., Martin, J.H., Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2009) Prentice Hall Series in Artificial Intelligence, pp. 1-1024Kanakaraj, M., Kamath, S.S., NLP based intelligent news search engine using information extraction from e-newspapers (2014) 2014 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5. , IEEEKanavos, A., Makris, C., Plegas, Y., Theodoridis, E., Ranking web search results exploiting wikipedia (2016) Int. J. Artif. Intell. Tools, 25 (3)Kozareva, Z., Hovy, E., Tailoring the automated construction of large-scale taxonomies using the web (2013) Lang. Resour. Eval., 47 (3), pp. 859-890Küçük, D., Arslan, Y., Semi-automatic construction of a domain ontology for wind energy using wikipedia articles (2014) Renew. Energy, 62, pp. 484-489Lahbib, W., Bounhas, I., Slimani, Y., Arabic terminology extraction and enrichment based on domain-specific text mining (2015) 2015 IEEE 27Th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 340-347. , IEEELeskovec, J., Rajaraman, A., Ullman, J.D., (2014) Mining of Massive Datasets, , Cambridge University Press, CambridgeLiu, S., Zhang, C., Termhood-based comparability metrics of comparable corpus in special domain (2013) CLSW 2012. LNCS (LNAI), 7717, pp. 134-144. , https://doi.org/10.1007/978-3-642-36337-515, Ji, D., Xiao, G. (eds.), Springer, HeidelbergLoria, S., TextBlob: Simplified text processing (2014) Secondary Textblob: Simplified Text ProcessingMarch, S.T., Smith, G.F., Design and natural science research on information technology (1995) Decis. Support Syst., 15 (4), pp. 251-266March, S.T., Storey, V.C., Design science in the information systems discipline: An introduction to the special issue on design science research (2008) MIS Q, 32, pp. 725-730Medelyan, O., Witten, I.H., Divoli, A., Broekstra, J., Automatic construction of lexicons, taxonomies, ontologies, and other knowledge structures (2013) Wiley Interdisc. Rev.: Data Min. Knowl. Discov., 3 (4), pp. 257-279Morell, M.F., The Wikimedia foundation and the governance of Wikipedias infrastructure: Historical trajectories and its hybrid character (2011) Critical Point of View: A Wikipedia Reader, pp. 325-341Petrov, S., Das, D., McDonald, R., (2011) A Universal Part-Of-Speech TagsetPowers, D.M.W., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation (2011) J. Mach. Learn. Technol., 2 (1), pp. 37-63Richardson, L., Ruby, S., (2008) Restful Web Services, , O’Reilly Media, Inc., SebastopolSchwaber, K., Beedle, M., (2002) Agile Software Development with Scrum, 1. , Prentice Hall, Upper Saddle RiverVállez, M., Pedraza-Jiménez, R., Codina, L., Blanco, S., Rovira, C., A semiautomatic indexing system based on embedded information in HTML documents (2015) Library Hi Tech, 33 (2), pp. 195-210van Rossum, G., Drake, F.L., Python Language Reference Manual (2003) Network Theory, , BristolWood, L., Nicol, G., Robie, J., Champion, M., Byrne, S., (2004) Document Object Model (DOM) Level 3 Core SpecificationZhu, M., Recall, precision and average precision (2004) Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, 2, p. 30http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8916/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8916oai:repositorio.utb.edu.co:20.500.12585/89162023-05-26 16:29:53.548Repositorio Institucional UTBrepositorioutb@utb.edu.co