Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4

After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem en...

Full description

Autores:
Payares Guevara, Carlos R.
Arias Amaya, Fabián
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10366
Acceso en línea:
https://hdl.handle.net/20.500.12585/10366
Palabra clave:
Simple Lie 2-algebra
Toral rank
Classical type lie algebra
Contragredient lie algebra
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_c1e601423ba83bc22a0045220ffd6b47
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10366
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
title Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
spellingShingle Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
Simple Lie 2-algebra
Toral rank
Classical type lie algebra
Contragredient lie algebra
LEMB
title_short Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
title_full Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
title_fullStr Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
title_full_unstemmed Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
title_sort Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
dc.creator.fl_str_mv Payares Guevara, Carlos R.
Arias Amaya, Fabián
dc.contributor.author.none.fl_str_mv Payares Guevara, Carlos R.
Arias Amaya, Fabián
dc.subject.keywords.spa.fl_str_mv Simple Lie 2-algebra
Toral rank
Classical type lie algebra
Contragredient lie algebra
topic Simple Lie 2-algebra
Toral rank
Classical type lie algebra
Contragredient lie algebra
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-22T21:27:13Z
dc.date.available.none.fl_str_mv 2021-09-22T21:27:13Z
dc.date.issued.none.fl_str_mv 2021-04-29
dc.date.submitted.none.fl_str_mv 2021-09-08
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Payares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10366
dc.identifier.doi.none.fl_str_mv 10.33044/revuma.1555
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Payares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555.
10.33044/revuma.1555
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10366
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Argentina
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Revista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/1/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/4/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/5/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdf.jpg
bitstream.checksum.fl_str_mv fd1ac7dcd4ad254d732e96710682cbb4
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
05c9aef16edc7144820d9187ea40d25a
8fbaa5cbefc420b1e16eaa6d0cb2f496
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021705294675968
spelling Payares Guevara, Carlos R.ba2913ef-00b7-4541-9329-dc960d04b2cfArias Amaya, Fabián713ecd4c-d974-4280-a4cd-5129cdc3e781Argentina2021-09-22T21:27:13Z2021-09-22T21:27:13Z2021-04-292021-09-08Payares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555.https://hdl.handle.net/20.500.12585/1036610.33044/revuma.1555Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAfter the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a).17 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Revista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4info:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Simple Lie 2-algebraToral rankClassical type lie algebraContragredient lie algebraLEMBCartagena de IndiasA. Grishkov and A. Premet, Simple Lie algebras of absolute toral rank 2 in characteristic 2, Preprint. https://www.ime.usp.br/˜grishkov/papers/asp.pdf.A. Grishkov, On simple Lie algebras over a field of characteristic 2, J. Algebra 363 (2012), 14–18. MR 2925843.S. P. Demuˇskin, Cartan subalgebras of the simple Lie p-algebras Wn and Sn, Sibirsk. Mat. Z. ˇ 11 (1970), 310–325. MR 0262310G. M. D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 441–452, 453–460. MR 0683531.N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers, New York, 1962. MR 0143793.N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206–224. MR 1501922V. G. Kac, The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385–408. MR 0276286I. Kaplansky, Linear algebra and geometry. A second course, Allyn and Bacon, Boston, MA, 1969. MR 0249444.G. B. Seligman, On Lie algebras of prime characteristic, Mem. Amer. Math. Soc. 19 (1956). MR 0077876.S. Skryabin, Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), no. 2, 650–700. MR 1610680R. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961), 1119–1129. MR 0143845H. Strade, The absolute toral rank of a Lie algebra, in Lie algebras, Madison 1987, 1–28, Lecture Notes in Math., 1373, Springer, Berlin, 1989. MR 1007321.B. Ju. Ve˘ısfe˘ıler and V. G. Kac, Exponentials in Lie algebras of characteristic p, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 762–788. MR 0306282http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdfCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdfapplication/pdf436295https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/1/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdffd1ac7dcd4ad254d732e96710682cbb4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdf.txtCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdf.txtExtracted texttext/plain36597https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/4/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdf.txt05c9aef16edc7144820d9187ea40d25aMD54THUMBNAILCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdf.jpgCLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL_Carlos Rafael Payare.pdf.jpgGenerated Thumbnailimage/jpeg60189https://repositorio.utb.edu.co/bitstream/20.500.12585/10366/5/CLASSICAL%20SIMPLE%20LIE%202-ALGEBRAS%20OF%20ODD%20TORAL_Carlos%20Rafael%20Payare.pdf.jpg8fbaa5cbefc420b1e16eaa6d0cb2f496MD5520.500.12585/10366oai:repositorio.utb.edu.co:20.500.12585/103662023-05-25 11:41:58.977Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=