Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4

After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem en...

Full description

Autores:
Payares Guevara, Carlos R.
Arias Amaya, Fabián
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10366
Acceso en línea:
https://hdl.handle.net/20.500.12585/10366
Palabra clave:
Simple Lie 2-algebra
Toral rank
Classical type lie algebra
Contragredient lie algebra
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a).