Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach
This paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy...
- Autores:
-
Garrido, Víctor Manuel
Montoya, Oscar Danilo
Medina-Quesada, Ángeles
Hernández, Jesús C
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12430
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12430
- Palabra clave:
- Distribution static compensators
Mixed-integer convex optimization
Optimal power flow approximation
Radial and meshed distribution networks
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_c05afff9f94fe9d4e04fbd924958751d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12430 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
title |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
spellingShingle |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach Distribution static compensators Mixed-integer convex optimization Optimal power flow approximation Radial and meshed distribution networks |
title_short |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
title_full |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
title_fullStr |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
title_full_unstemmed |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
title_sort |
Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach |
dc.creator.fl_str_mv |
Garrido, Víctor Manuel Montoya, Oscar Danilo Medina-Quesada, Ángeles Hernández, Jesús C |
dc.contributor.author.none.fl_str_mv |
Garrido, Víctor Manuel Montoya, Oscar Danilo Medina-Quesada, Ángeles Hernández, Jesús C |
dc.subject.keywords.spa.fl_str_mv |
Distribution static compensators Mixed-integer convex optimization Optimal power flow approximation Radial and meshed distribution networks |
topic |
Distribution static compensators Mixed-integer convex optimization Optimal power flow approximation Radial and meshed distribution networks |
description |
This paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy losses costs. To represent the electrical behavior of the distribution networks, a power flow formulation is used which includes voltages, currents, and power as variables via incidence matrix representation. This formulation generates a mixed-integer nonlinear programming (MINLP) model that accurately represents the studied problem. However, in light of the complexities involved in solving this MINLP model efficiently, this research proposes a mixed-integer convex reformulation. Numerical results regarding the final annual operating costs of the network demonstrate that the proposed mixed-integer convex model is efficient for selecting and locating D-STATCOMs in distribution networks, with the main advantage that it is applicable to radial and meshed distribution grid configurations. A comparative analysis with respect to metaheuristic optimizers and convex approximations confirms the robustness of the proposed formulation. All numerical validations were conducted in the MATLAB programming environment with our own scripts (in the case of metaheuristics) and the CVX convex disciplined tool via the Gurobi solver. In addition, the exact MINLP model is solved using the GAMS software. © 2022 by the authors. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-10 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T12:10:35Z |
dc.date.available.none.fl_str_mv |
2023-07-25T12:10:35Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Garrido, V.M.; Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach. Sensors 2022, 22, 8676. https://doi.org/10.3390/s22228676 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12430 |
dc.identifier.doi.none.fl_str_mv |
10.3390/s22228676 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Garrido, V.M.; Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach. Sensors 2022, 22, 8676. https://doi.org/10.3390/s22228676 10.3390/s22228676 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12430 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
15 páginas |
dc.format.medium.none.fl_str_mv |
Pdf |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Sensors - Vol. 22 No. 22 (2022) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/1/sensors-22-08676.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/4/sensors-22-08676.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/5/sensors-22-08676.pdf.jpg |
bitstream.checksum.fl_str_mv |
25fa8afb89cb1b305ef5b748a8c9a154 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 e94109c6c302b804e13676993358e775 b7dcdd76bddbb7ab26ed1ddfa68db4fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021656282136576 |
spelling |
Garrido, Víctor Manuelf53136bc-ecc5-45ad-a5a6-d1b2c1455a92Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Medina-Quesada, Ángelesc4945c01-b7fc-40f7-af40-bc8515e102d8Hernández, Jesús C0bddc46e-ce64-47d5-b654-2b2dfc3d87dc2023-07-25T12:10:35Z2023-07-25T12:10:35Z2022-11-102023-07Garrido, V.M.; Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach. Sensors 2022, 22, 8676. https://doi.org/10.3390/s22228676https://hdl.handle.net/20.500.12585/1243010.3390/s22228676Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy losses costs. To represent the electrical behavior of the distribution networks, a power flow formulation is used which includes voltages, currents, and power as variables via incidence matrix representation. This formulation generates a mixed-integer nonlinear programming (MINLP) model that accurately represents the studied problem. However, in light of the complexities involved in solving this MINLP model efficiently, this research proposes a mixed-integer convex reformulation. Numerical results regarding the final annual operating costs of the network demonstrate that the proposed mixed-integer convex model is efficient for selecting and locating D-STATCOMs in distribution networks, with the main advantage that it is applicable to radial and meshed distribution grid configurations. A comparative analysis with respect to metaheuristic optimizers and convex approximations confirms the robustness of the proposed formulation. All numerical validations were conducted in the MATLAB programming environment with our own scripts (in the case of metaheuristics) and the CVX convex disciplined tool via the Gurobi solver. In addition, the exact MINLP model is solved using the GAMS software. © 2022 by the authors.15 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sensors - Vol. 22 No. 22 (2022)Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Distribution static compensatorsMixed-integer convex optimizationOptimal power flow approximationRadial and meshed distribution networksCartagena de IndiasMishra, S., Das, D., Paul, S. A comprehensive review on power distribution network reconfiguration (2017) Energy Systems, 8 (2), pp. 227-284. Cited 118 times. http://www.springer.com/engineering/energy+technology/journal/12667 doi: 10.1007/s12667-016-0195-7Karampelas, P., Ekonomou, L. (2016) Electricity Distribution. Cited 25 times. Springer, Berlin/Heidelberg, GermanyLavorato, M., Franco, J.F., Rider, M.J., Romero, R. Imposing radiality constraints in distribution system optimization problems (2012) IEEE Transactions on Power Systems, 27 (1), art. no. 5982115, pp. 172-180. Cited 411 times. doi: 10.1109/TPWRS.2011.2161349Montoya, O.D., Serra, F.M., De Angelo, C.H. On the efficiency in electrical networks with ac and dc operation technologies: A comparative study at the distribution stage (2020) Electronics (Switzerland), 9 (9), art. no. 1352, pp. 1-23. Cited 32 times. https://www.mdpi.com/2079-9292/9/9/1352/pdf doi: 10.3390/electronics9091352Ma, Y., Tong, X., Zhou, X., Gao, Z. The review on distribution network reconfiguration (2017) Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, art. no. 7978897, pp. 2292-2297. Cited 9 times. ISBN: 978-150904656-0 doi: 10.1109/CCDC.2017.7978897Khodr, H.M., Zerpa, I.J., De Oliveira-De Jesús, P.M., Matos, M.A. Optimal phase balancing in distribution system using mixed-integer linear programming (2006) 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC'06, art. no. 4104582. Cited 18 times. ISBN: 1424402883; 978-142440288-5 doi: 10.1109/TDCLA.2006.311368Olabode, O.E., Okakwu, I.K., Alayande, A.S., Ajewole, T.O. A two-stage approach to shunt capacitor-based optimal reactive power compensation using loss sensitivity factor and cuckoo search algorithm (2020) Energy Storage, 2, p. e122. Cited 14 times.Quintana, E., Inga, E. Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints (2022) Energies, 15 (15), art. no. 5317. Cited 5 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15155317Hooshmand, E., Rabiee, A. Distribution feeder reconfiguration considering price-based demand response program (2019) Demand Response Application in Smart Grids: Operation Issues - Volume 2, pp. 95-117. http://dx.doi.org/10.1007/978-3-030-32104-8 ISBN: 978-303032104-8; 978-303032103-1 doi: 10.1007/978-3-030-32104-8_5Granada-Echeverri, M., Gallego-Rendón, R.A., López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm (2012) Ingeniería y Ciencia, 8, pp. 121-140. Cited 27 times.Siti, W., Jimoh, A., Nicolae, D. Phase load balancing in the secondary distribution network using a fuzzy logic and a combinatorial optimization based on the Newton Raphson (2009) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5788 LNCS, pp. 92-100. Cited 13 times. ISBN: 3642043933; 978-364204393-2 doi: 10.1007/978-3-642-04394-9_12Soltani, S.H., Rashidinejad, M., Abdollahi, A. Dynamic phase balancing in the smart distribution networks (2017) International Journal of Electrical Power and Energy Systems, 93, pp. 374-383. Cited 22 times. doi: 10.1016/j.ijepes.2017.06.016Nguyen, T.T., Le, K.H., Phan, T.M., Duong, M.Q. An Effective Reactive Power Compensation Method and a Modern Metaheuristic Algorithm for Loss Reduction in Distribution Power Networks (2021) Complexity, 2021, art. no. 8346738. Cited 4 times. https://www.hindawi.com/journals/complexity/ doi: 10.1155/2021/8346738Águila Téllez, A., López, G., Isaac, I., González, J.W. Optimal reactive power compensation in electrical distribution systems with distributed resources. Review (Open Access) (2018) Heliyon, 4 (8), art. no. e00746. Cited 48 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2018.e00746Dash, S.K., Mishra, S., Abdelaziz, A.Y. A Critical Analysis of Modeling Aspects of D-STATCOMs for Optimal Reactive Power Compensation in Power Distribution Networks (2022) Energies, 15 (19), art. no. 6908. Cited 2 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15196908Mora-Burbano, J.A., Fonseca-Díaz, C.D., Montoya, O.D. Application of the SSA for Optimal Reactive Power Compensation in Radial and Meshed Distribution Using D-STATCOMs (Open Access) (2022) Algorithms, 15 (10), art. no. 345. Cited 4 times. www.mdpi.com/journal/algorithms/ doi: 10.3390/a15100345Sirjani, R., Rezaee Jordehi, A. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review (Open Access) (2017) Renewable and Sustainable Energy Reviews, 77, pp. 688-694. Cited 100 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.04.035Grisales-Noreña, L.F., Montoya, O.D., Hernández, J.C., Ramos-Paja, C.A., Perea-Moreno, A.-J. A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs (2022) Mathematics, 10 (14), art. no. 2453. Cited 8 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10142453Gupta, A.R., Kumar, A. Impact of DG and D-STATCOM Placement on Improving the Reactive Loading Capability of Mesh Distribution System (2016) Procedia Technol, 25, pp. 676-683. Cited 16 times.Devi, S., Geethanjali, M. Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 62, pp. 646-653. Cited 40 times. doi: 10.1016/j.ijepes.2014.05.021Montoya, O.D., Garces, A., Gil-González, W. Minimization of the distribution operating costs with D-STATCOMS: A mixed-integer conic model (2022) Electric Power Systems Research, 212, art. no. 108346. Cited 6 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108346Farivar, M., Low, S.H. Branch flow model: Relaxations and convexification-part i (Open Access) (2013) IEEE Transactions on Power Systems, 28 (3), art. no. 6507355, pp. 2554-2564. Cited 932 times. doi: 10.1109/TPWRS.2013.2255317Gupta, A.R., Kumar, A. Optimal placement of D-STATCOM in distribution network using new sensitivity index with probabilistic load models (Open Access) (2015) 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015, art. no. 7453316. Cited 11 times. ISBN: 978-146738253-3 doi: 10.1109/RAECS.2015.7453316Weqar, B., Khan, M.T., Siddiqui, A.S. Optimal Placement of Distributed Generation and D-STATCOM in Radial Distribution Network (2018) Smart Science, 6 (2), pp. 125-133. Cited 15 times. http://www.tandfonline.com/toc/tsma20/current doi: 10.1080/23080477.2017.1405625Isha, G., Jagatheeswari, P. Optimal allocation of DSTATCOM and PV array in distribution system employing fuzzy-lightning search algorithm (2021) Automatika, 62 (3), pp. 339-352. Cited 14 times. http://www.tandfonline.com/loi/taut20 doi: 10.1080/00051144.2021.1963080Sanam, J., Ganguly, S., Panda, A.K., Hemanth, C. Optimization of Energy Loss Cost of Distribution Networks with the Optimal Placement and Sizing of DSTATCOM Using Differential Evolution Algorithm (Open Access) (2017) Arabian Journal for Science and Engineering, 42 (7), pp. 2851-2865. Cited 27 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-017-2518-yNoori, A., Zhang, Y., Nouri, N., Hajivand, M. Multi-Objective Optimal Placement and Sizing of Distribution Static Compensator in Radial Distribution Networks with Variable Residential, Commercial and Industrial Demands Considering Reliability (Open Access) (2021) IEEE Access, 9, art. no. 9376874, pp. 46911-46926. Cited 20 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3065883Salkuti, S.R. Optimal Allocation of DG and D-STATCOM in a Distribution System using Evolutionary based Bat Algorithm (2021) International Journal of Advanced Computer Science and Applications, 12 (4), pp. 360-365. Cited 20 times. http://thesai.org/Publications/Archives?code=IJACSA doi: 10.14569/IJACSA.2021.0120445Bagherinasab, A., Zadehbagheri, M., Khalid, S.A., Gandomkar, M., Azli, N.A. Optimal Placement of D-STATCOM Using Hybrid Genetic and Ant Colony Algorithm to Losses Reduction (2013) Int. J. Appl. Power Eng. (IJAPE), 2, pp. 53-60. Cited 23 times.Sakthi Gokul Rajan, C., Ravi, K. Optimal placement and sizing of DSTATCOM using Ant lion optimization algorithm (2019) 8th International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2019, art. no. 9082382. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9079934 ISBN: 978-172810837-7 doi: 10.1109/ICCPEIC45300.2019.9082382Saravanan, M., Slochanal, S.M.R., Venkatesh, P., Prince, S.A.J. Application of PSO technique for optimal location of FACTS devices considering system loadability and cost of installation (Open Access) (2005) 7th International Power Engineering Conference, IPEC2005, 2005, art. no. 1627290. Cited 80 times. ISBN: 9810544693; 978-981054469-0Sirjani, R. Optimal placement and sizing of PV-STATCOM in power systems using empirical data and adaptive particle swarm optimization (Open Access) (2018) Sustainability (Switzerland), 10 (3), art. no. 727. Cited 16 times. http://www.mdpi.com/2071-1050/10/3/727/pdf doi: 10.3390/su10030727Jazebi, S., Hosseinian, S.H., Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm (Open Access) (2011) Energy Conversion and Management, 52 (7), pp. 2777-2783. Cited 122 times. doi: 10.1016/j.enconman.2011.01.006Gupta, A.R., Kumar, A. Optimal placement of D-STATCOM using sensitivity approaches in mesh distribution system with time variant load models under load growth (Open Access) (2018) Ain Shams Engineering Journal, 9 (4), pp. 783-799. Cited 43 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2016.05.009Salkuti, S.R. Optimal location and sizing of DG and D-STATCOM in distribution networks (Open Access) (2019) Indonesian Journal of Electrical Engineering and Computer Science, 16 (3), pp. 1107-1114. Cited 17 times. http://ijeecs.iaescore.com/index.php/IJEECS doi: 10.11591/ijeecs.v16.i3.pp1107-1114Montoya, O.D., Chamorro, H.R., Alvarado-Barrios, L., Gil-González, W., Orozco-Henao, C. Genetic-convex model for dynamic reactive power compensation in distribution networks using D-STATCOMs (2021) Applied Sciences (Switzerland), 11 (8), art. no. 3353. Cited 14 times. https://www.mdpi.com/2076-3417/11/8/3353/pdf doi: 10.3390/app11083353Sharma, A.K., Saxena, A., Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost (2016) Int. J. Hybrid Inf. Technol, 9, pp. 289-302. Cited 20 times.Han, B.-S., Yang, Y.-J. An approximate algorithm for the mixed integer nonlinear programming (Open Access) (2012) Proceedings of the 2012 5th International Joint Conference on Computational Sciences and Optimization, CSO 2012, art. no. 6274761, pp. 433-437. Cited 5 times. ISBN: 978-076954690-2 doi: 10.1109/CSO.2012.101Thi, H.A.L., Le, H.M., Dinh, T.P. (2020) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. Cited 2 times. Springer International Publishing, Berlin/Heidelberg, GermanyHusain, T., Muqueem, K., Ansari, M.M. Load flow analysis of radial and mesh distribution system using ZIP model (2016) Proceedings - International Conference on Global Trends in Signal Processing, Information Computing and Communication, ICGTSPICC 2016, art. no. 7955338, pp. 419-427. Cited 4 times. ISBN: 978-150900467-6 doi: 10.1109/ICGTSPICC.2016.7955338http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALsensors-22-08676.pdfsensors-22-08676.pdfapplication/pdf322168https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/1/sensors-22-08676.pdf25fa8afb89cb1b305ef5b748a8c9a154MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsensors-22-08676.pdf.txtsensors-22-08676.pdf.txtExtracted texttext/plain53743https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/4/sensors-22-08676.pdf.txte94109c6c302b804e13676993358e775MD54THUMBNAILsensors-22-08676.pdf.jpgsensors-22-08676.pdf.jpgGenerated Thumbnailimage/jpeg8046https://repositorio.utb.edu.co/bitstream/20.500.12585/12430/5/sensors-22-08676.pdf.jpgb7dcdd76bddbb7ab26ed1ddfa68db4fbMD5520.500.12585/12430oai:repositorio.utb.edu.co:20.500.12585/124302023-07-26 00:17:42.183Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |