Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation

One route of exposure to SPAs is through bottled water since the polymers used to make plastic bottles contain these SPAs, which migrate from the plastic to the water. Solid-phase extraction (SPE), HPLC-MS, FTIR, and DSC are used to identify and quantify these SPAs in water. Interday measurements of...

Full description

Autores:
Hernández Fernández, Joaquín
Ortega-Toro, Rodrigo
Castro-Suarez, John R .
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11956
Acceso en línea:
https://hdl.handle.net/20.500.12585/11956
https://doi.org/10.3390/w15050933
Palabra clave:
Bottled water
Synthetic phenolic antioxidant
Cyanox 1790
Recycled packaging
Non-recycled packaging
Additive migration
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bf95f71d89ae8c548103a4ccfc2968d3
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11956
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
title Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
spellingShingle Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
Bottled water
Synthetic phenolic antioxidant
Cyanox 1790
Recycled packaging
Non-recycled packaging
Additive migration
LEMB
title_short Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
title_full Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
title_fullStr Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
title_full_unstemmed Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
title_sort Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation
dc.creator.fl_str_mv Hernández Fernández, Joaquín
Ortega-Toro, Rodrigo
Castro-Suarez, John R .
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquín
Ortega-Toro, Rodrigo
Castro-Suarez, John R .
dc.subject.keywords.spa.fl_str_mv Bottled water
Synthetic phenolic antioxidant
Cyanox 1790
Recycled packaging
Non-recycled packaging
Additive migration
topic Bottled water
Synthetic phenolic antioxidant
Cyanox 1790
Recycled packaging
Non-recycled packaging
Additive migration
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description One route of exposure to SPAs is through bottled water since the polymers used to make plastic bottles contain these SPAs, which migrate from the plastic to the water. Solid-phase extraction (SPE), HPLC-MS, FTIR, and DSC are used to identify and quantify these SPAs in water. Interday measurements of cyanox 1790 in water with HPLC showed RSD, error, and R2 lower than 3.78, 9.3,and 0.99995, respectively. For intraday measurements of cyanox 1790 in water, the RSD, error, and R2 were less than 4.1, 11.2, and 0.99995, respectively. Concentrations of Cyanox 1790 in water from non-recycled bottles ranged from 0.01 ± 0.0004 to 4.15 ± 0. 14 ppm, while the levels of cyanox 1790 in water in recycled bottles ranged between 0.01 ± 0.0005 and 11.27 ± 0.12 ppm. In the tests carried out, an increase in the migration of Cyanox 1790 from plastic bottles to water was identified, since the ppm of Cyanox increased in the water as the days of storage increased at 40 ◦C.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-30T14:04:30Z
dc.date.available.none.fl_str_mv 2023-05-30T14:04:30Z
dc.date.issued.none.fl_str_mv 2023-02-28
dc.date.submitted.none.fl_str_mv 2023-05-25
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Hernández-Fernández, J.;Ortega-Toro, R.; Castro-Suarez, J.R.Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/ MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933. https://doi.org/10.3390/w15050933
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11956
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/w15050933
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández-Fernández, J.;Ortega-Toro, R.; Castro-Suarez, J.R.Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/ MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933. https://doi.org/10.3390/w15050933
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11956
https://doi.org/10.3390/w15050933
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Water - Vol. 15 No. 5 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/1/water-15-00933.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/4/water-15-00933.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/5/water-15-00933.pdf.jpg
bitstream.checksum.fl_str_mv c4be6b24604328938ae9194ec3a72b89
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
29b42c5fd2c25c9654e76cf01336f51b
a115f4a32f71877d4338a9cd96e355f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021623788863488
spelling Hernández Fernández, Joaquínbc85d77e-b89b-40f6-a090-a475dc6dc160Ortega-Toro, Rodrigod594d4c1-6ec9-4782-a84b-cee2853ea359Castro-Suarez, John R .e2326948-21b0-4572-aa06-ed6fc206a6e92023-05-30T14:04:30Z2023-05-30T14:04:30Z2023-02-282023-05-25Hernández-Fernández, J.;Ortega-Toro, R.; Castro-Suarez, J.R.Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/ MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933. https://doi.org/10.3390/w15050933https://hdl.handle.net/20.500.12585/11956https://doi.org/10.3390/w15050933Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOne route of exposure to SPAs is through bottled water since the polymers used to make plastic bottles contain these SPAs, which migrate from the plastic to the water. Solid-phase extraction (SPE), HPLC-MS, FTIR, and DSC are used to identify and quantify these SPAs in water. Interday measurements of cyanox 1790 in water with HPLC showed RSD, error, and R2 lower than 3.78, 9.3,and 0.99995, respectively. For intraday measurements of cyanox 1790 in water, the RSD, error, and R2 were less than 4.1, 11.2, and 0.99995, respectively. Concentrations of Cyanox 1790 in water from non-recycled bottles ranged from 0.01 ± 0.0004 to 4.15 ± 0. 14 ppm, while the levels of cyanox 1790 in water in recycled bottles ranged between 0.01 ± 0.0005 and 11.27 ± 0.12 ppm. In the tests carried out, an increase in the migration of Cyanox 1790 from plastic bottles to water was identified, since the ppm of Cyanox increased in the water as the days of storage increased at 40 ◦C.15 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Water - Vol. 15 No. 5 (2023)Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bcceBottled waterSynthetic phenolic antioxidantCyanox 1790Recycled packagingNon-recycled packagingAdditive migrationLEMBCartagena de IndiasCampus TecnológicoPúblico generalFortune Business Insights. The Global Antioxidants Market Is Expected to Grow from $4.13 Billion in 2021 to $6.05 Billion in 2028 at a CAGR of 5.61% in the Forecast Period, 2021–2028. 2021. Available online: https://www.fortunebusinessinsights.com/ industry-reports/food-antioxidants-market-100789 (accessed on 24 January 2023).Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442.Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.Wiles, D.M.; Scott, G. Polyolefins with controlled environmental degradability. Polym. Degrad. Stab. 2006, 91, 1581–1592.Al-Malaika, S. Perspectives in stabilisation of polyolefins. Adv. Polym. Sci. 2004, 169, 121–150.Pospíšil, J. Mechanistic Action of Phenolic Antioxidants in Polymers—A Review. Polym. Degrad. Stab. 1988, 20, 181–202Coreño-Alonso, J.; Méndez-Bautista, M.T. Relación estructura-propiedades de polímeros. Educ. Quím. 2010, 21, 291–299.Liu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in sewage treatment plant and recipient river by high performance liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 13–21.Liu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080.Liu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080.Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531.Wang, J.; Wang, J.; Liu, J.; Li, J.; Zhou, L.; Zhang, H.; Sun, J.; Zhuang, S. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms. Environ. Pollut. 2018, 240, 396–402.13. Wang, W.; Kannan, K. Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Res. 2018, 129, 413–418.Tang, J.; Tang, L.; Zhang, C.; Zeng, G.; Deng, Y.; Dong, H.; Wang, J.; Wu, Y. Different senescent HDPE pipe-risk: Brief field investigation from source water to tap water in China (Changsha City). Environ. Sci. Pollut. Res. 2015, 22, 16210–16214.Shao-Yang, H. Toxicity effects of the environmental hormone 4-tert-octylphenol in zebrafish (Danio rerio). Int. J. Mar. Sci. 2016, 6, 4–5.Honda, M.; Kannan, K. Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ. Pollut. 2018, 232, 487–493.Wang, W.; Kannan, K. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environ. Int. 2019, 128, 24–29.Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719.Dương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386.Liu, R.; Mabury, S.A. Synthetic phenolic antioxidants and transformation products in dust from different indoor environments in Toronto, Canada. Sci. Total Environ. 2019, 672, 23–29.Makahleh, A.; Saad, B.; Bari, M.F. Synthetic phenolics as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 51–78.Gonçalves-Filho, D.; De Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137.Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22Wang, W.; Asimakopoulos, A.G.; Abualnaja, K.O.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B.; et al. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. Environ. Sci. Technol. 2015, 50, 428–434.Wang, W.; Asimakopoulos, A.G.; Abualnaja, K.O.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B.; et al. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. Environ. Sci. Technol. 2015, 50, 428–434.Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488.Hernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2003, 28, 2003Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 1171.Bonachela, S.; López, J.; Granados, M.; Magán, J.; Hernández, J.; Baille, A. Effects of gravel mulch on surface energy balance and soil thermal regime in an unheated plastic greenhouse. Biosyst. Eng. 2020, 192, 1–13.Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability (Switzerland) 2022, 14, 4920.Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808.European Parliament and Council Directive No 95/2/EC. 1995. Available online: https://eur-lex.europa.eu/eli/dir/1995/2/oj (accessed on 14 December 2022).Nurerk, P.; Bunkoed, O.; Jullakan, S.; Khongkla, S.; Llompart, M.; Poorahong, S. A dumbbell-shaped stir bar made from poly(3,4- ethylenedioxythiophene)-coated porous cryogel incorporating metal organic frameworks for the extraction of synthetic phenolic antioxidants in foodstuffs. J. Chromatogr. A 2021, 1655, 462497.Wang, W.; Wang, X.; Zhu, Q.; Zhou, Q.; Wang, Y.; Liao, C.; Jiang, G. Occurrence of synthetic phenolic antioxidants in foodstuffs from ten provinces in China and its implications for human dietary exposure. Food Chem. Toxicol. 2022, 165, 113134.Ham, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. Environ. Pollut. 2019, 248, 845–856.Ham, J.; Lim, W.; You, S.; Song, G. Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. Sci. Total Environ. 2019, 702, 134775.Scientific Opinion on the re-evaluation of butylated hydroxyanisole—BHA (E 320) as a food additive. EFSA J. 2011, 9, 2392.. Scientific Opinion on the re-evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J. 2012, 10, 2588.Statement on the refined exposure assessment of tertiary-butyl hydroquinone (E 319). EFSA J. 2016, 14, 4363.Scientific Opinion on the re-evaluation of propyl gallate (E 310) as a food additive. EFSA J. 2014, 12, 3642.Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropy lene. J. Anal. Appl. Pyrolysis 2021, 161, 10538Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919.Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.48. CYTEC. Cyanox 1790 Material Safety Data Sheet. 2019. Available online: https://www.echemi.com/sds/tris4-tert-butyl-3- hydroxy-26-dimethylbenzylisocyanurate-pid_Seven42940.html (accessed on 27 October 2022).Altaf, M.; Najam, T.; Jabeen, S.; Wattoo, M.; Bashair, M.; Ahmad, S.; Rehman, A. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008.Altaf, M.; Najam, T.; Jabeen, S.; Wattoo, M.; Bashair, M.; Ahmad, S.; Rehman, A. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324.da Silva Costa, R.; Fernandes, T.S.M.; Almeida, E.D.S.; Oliveira, J.T.; Guedes, J.A.C.; Zocolo, G.J.; de Sousa, F.W.; Nascimento, R.F.D. Potential risk of BPA and phthalates in commercial water bottles: A mini review. J. Water Health 2021, 19, 411–435.Parto, M.; Aazami, J.; Shamsi, Z.; Zamani, A.; Savabieasfahani, M. Determination of bisphenol-A in plastic bottled water in markets of Zanjan, Iran. Int. J. Environ. Sci. Technol. 2021, 19, 3337–3344.Ghanem, A.; Maalouly, J.; Saad, R.A.; Salameh, D.; Saliba, C.O. Safety of Lebanese Bottled Waters: VOCs Analysis and Migration Studies. Am. J. Anal. Chem. 2013, 4, 176–189.Al-Mudhaf, H.F.; Alsharifi, F.A.; Abu-Shady, A.-S.I. A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci. Total Environ. 2009, 407, 1658–1668Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283.Welle, F.; Franz, R. Microplastic in bottled natural mineral water—Literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A 2018, 35, 2482–2492.Maxwell, O.; Olusegun, O.A.; Emmanuel, S.J.; Sociis, T.O.; Efemena, A.O.; Akinwumi, A.; Theophilus, E.A. Potential Health Risks of Heavy Metal Contents in Bottled Water from Lagos State and Its Environs, Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012021.Nazir, M.A.; Yasar, A.; Bashir, M.A.; Siyal, S.H.; Najam, T.; Javed, M.S.; Ahmad, K.; Hussain, S.; Anjum, S.; Hussain, E.; et al. Quality assessment of the noncarbonated-bottled drinking water: Comparison of their treatment techniques. Int. J. Environ. Anal. Chem. 2020, 102, 8195–8206.Leavey-Roback, S. Heavy Metals in Bottled Natural Spring Water Article. 2011. Available online: https://www.researchgate.net/ publication/51213966 (accessed on 3 January 2023).. Ding, J.; Shen, X.; Liu, W.; Covaci, A.; Yang, F. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Sci. Total Environ. 2015, 538, 959–965.Josyula, A.B.; McClellen, H.; Hysong, T.A.; Kurzius-Spencer, M.; Poplin, G.S.; Stürup, S.; Burgess, J.L. Reduction in Urinary Arsenic with Bottled-water Intervention. J. Health Popul. Nutr. 2006, 24, 298–304Mostafa, M.G.; Cherry, N. Arsenic in Drinking Water, Transition Cell Cancer and Chronic Cystitis in Rural Bangladesh. Int. J. Environ. Res. Public Health 2015, 12, 13739–13749Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557.Carvalho, S.M.; Santos, D. Consumo de agua embotellada en envases plásticos y sus consecuencias para la salud familiar y comunitaria. 2020. Available online: https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/4410/Carvalho_ DosSantos_Sandra_Mar%25C3%25ADa_2020.pdf?sequence=1&isAllowed=y (accessed on 12 January 2023).6. Aslani, H.; Pashmtab, P.; Shaghaghi, A.; Mohammadpoorasl, A.; Taghipour, H.; Zarei, M. Tendencies towards bottled drinking water consumption: Challenges ahead of polyethylene terephthalate (PET) waste management. Health Promot. Perspect. 2021, 11, 60–68.Díez, J.R.; Antigüedad, I.; Agirre, E.; Rico, A. Perceptions and Consumption of Bottled Water at the University of the Basque Country: Showcasing Tap Water as the Real Alternative towards a Water-Sustainable University. Sustainability 2018, 10, 3431.Jain; Singh, A.K.; Susan, M.A.B.H. The World around Bottled Water. Bottled Packaged Water 2019, 4, 39–61.Hernández-Fernández, J.; Puello-Polo, E.; Trilleras, J. Characterization of Microplastics in Total Atmospheric Deposition Sampling from Areas Surrounding Industrial Complexes in Northwestern Colombia. Sustainability 2022, 14, 13613.Farzadkia, M.; Shahamat, Y.D.; Nasseri, S.; Mahvi, A.H.; Gholami, M.; Shahryari, A. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates. J. Eng. 2014, 2014, 520929.Guo, L.; Hu, Y.; Lei, Y.; Wu, H.; Yang, G.; Wang, Y.; Wei, G. Vitrification of petrochemical sludge for rapid, facile, and sustainable fixation of heavy metals. J. Environ. Chem. Eng. 2022, 10, 108812Wang, S.; Kalkhajeh, Y.K.; Qin, Z.; Jiao, W. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, south China. Environ. Res. 2020, 188, 109661Kanu, I.; Achi, O. Industrial Effluents and Their Impact on Water Quality of Receiving Rivers in Nigeria Medical Microbiology View Project Fermented Food Development View Project. 2011. Available online: https://www.researchgate.net/publication/28 7104597 (accessed on 13 January 2023).Radelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. J. Clean. Prod. 2021, 302, 126987Rodil, R.; Quintana, J.B.; Basaglia, G.; Pietrogrande, M.C.; Cela, R. Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 6428–6435.Spectrabase. Cyanox 1790-FTIR-Spectrum-SpectraBase, 22 August 2022. Cyanox 1790 Antioxidant. Available online: https: //spectrabase.com/spectrum/I3g5xqi3f4q (accessed on 18 January 2023).Casagrande, M.; Kulsing, C.; Althakafy, J.T.; Piatnicki, C.M.S.; Marriott, P.J. Direct Analysis of Synthetic Phenolic Antioxi dants, and Fatty Acid Methyl Ester Stability in Biodiesel by Liquid Chromatography and High-Resolution Mass Spectrometry. Chromatographia 2018, 82, 271–278Alladio, E.; Amante, E.; Bozzolino, C.; Seganti, F.; Salomone, A.; Vincenti, M.; Desharnais, B. Effective validation of chromato graphic analytical methods: The illustrative case of androgenic steroids. Talanta 2020, 215, 120867.Fernández, J.H.; Rincón, D.; López-Martínez, J. Development and validation of a prototype for the on-line simultaneous analysis of quality caprolactam synthesized on an industrial scale. Methodsx 2022, 10, 101952.Murry, J.E. Synthetic Polymers. In Organic Chemistry; ACS Publications: Washington, DC, USA, 2011; p. 1242. Available on line: https://www.aspu.edu.sy/laravel-filemanager/files/31/McMurry%20Organic%20Chemistry%208th%20txtbk_compressed. pdf (accessed on 4 January 2023).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALwater-15-00933.pdfwater-15-00933.pdfArtículo principalapplication/pdf2361888https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/1/water-15-00933.pdfc4be6b24604328938ae9194ec3a72b89MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTwater-15-00933.pdf.txtwater-15-00933.pdf.txtExtracted texttext/plain60501https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/4/water-15-00933.pdf.txt29b42c5fd2c25c9654e76cf01336f51bMD54THUMBNAILwater-15-00933.pdf.jpgwater-15-00933.pdf.jpgGenerated Thumbnailimage/jpeg8197https://repositorio.utb.edu.co/bitstream/20.500.12585/11956/5/water-15-00933.pdf.jpga115f4a32f71877d4338a9cd96e355f9MD5520.500.12585/11956oai:repositorio.utb.edu.co:20.500.12585/119562023-05-31 00:18:31.262Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=