Dust particle artifact detection and removal in retinal images

Retinal fundus cameras suffer from dust particles attaching to the sensor and lens, which manifest as small artifacts on the images. We propose a new strategy for the detection and removal of dust particle artifacts in retinal images. We consider as input two or more color fundus images acquired wit...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8741
Acceso en línea:
https://hdl.handle.net/20.500.12585/8741
Palabra clave:
Artifact localization
Dust particle artifacts
Inpainting
Retinal image
Retinal image enhancement
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bf2f31a553a8269f8f1082af40699b98
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8741
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Dust particle artifact detection and removal in retinal images
title Dust particle artifact detection and removal in retinal images
spellingShingle Dust particle artifact detection and removal in retinal images
Artifact localization
Dust particle artifacts
Inpainting
Retinal image
Retinal image enhancement
title_short Dust particle artifact detection and removal in retinal images
title_full Dust particle artifact detection and removal in retinal images
title_fullStr Dust particle artifact detection and removal in retinal images
title_full_unstemmed Dust particle artifact detection and removal in retinal images
title_sort Dust particle artifact detection and removal in retinal images
dc.subject.keywords.none.fl_str_mv Artifact localization
Dust particle artifacts
Inpainting
Retinal image
Retinal image enhancement
topic Artifact localization
Dust particle artifacts
Inpainting
Retinal image
Retinal image enhancement
description Retinal fundus cameras suffer from dust particles attaching to the sensor and lens, which manifest as small artifacts on the images. We propose a new strategy for the detection and removal of dust particle artifacts in retinal images. We consider as input two or more color fundus images acquired within the same session, in which we assume the artifacts remain in the same position. Our method consists in detecting candidate artifacts via normalized cross correlation with an artifact template, performing segmentation via region growing, and comparing the segmentations in all images. This guarantees that all detections are consistent for all images. The removal stage consists in an inpainting procedure so that the new region does not stand out from the neighboring regions. Encouraging experimental results show the localization of artifacts is effective and the artifacts are successfully removed, while not introducing new artifacts in the color retinal images. © Sociedad Española de Óptica.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:15Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:15Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Optica Pura y Aplicada; Vol. 50, Núm. 4; pp. 379-387
dc.identifier.issn.none.fl_str_mv 0030-3917
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8741
dc.identifier.doi.none.fl_str_mv 10.7149/OPA.50.4.49075
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Optica Pura y Aplicada; Vol. 50, Núm. 4; pp. 379-387
0030-3917
10.7149/OPA.50.4.49075
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8741
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedad Espanola de Optica
publisher.none.fl_str_mv Sociedad Espanola de Optica
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85039953172&doi=10.7149%2fOPA.50.4.49075&partnerID=40&md5=ea8de9a65103126204d0ecbaa9cc2273
Scopus 56682678200
Scopus 24329839300
Scopus 7201466399
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/1/DOI10_7149OPA_50_4_49075.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/4/DOI10_7149OPA_50_4_49075.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/5/DOI10_7149OPA_50_4_49075.pdf.jpg
bitstream.checksum.fl_str_mv 117f1e2a77bc8b7e482f2bf07909799e
e53e1e8f5a39cca00c9e9833bf421e9d
addacd09a160a6f7d2d20cf6b381dc39
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021786578190336
spelling 2019-11-06T19:05:15Z2019-11-06T19:05:15Z2017Optica Pura y Aplicada; Vol. 50, Núm. 4; pp. 379-3870030-3917https://hdl.handle.net/20.500.12585/874110.7149/OPA.50.4.49075Universidad Tecnológica de BolívarRepositorio UTBRetinal fundus cameras suffer from dust particles attaching to the sensor and lens, which manifest as small artifacts on the images. We propose a new strategy for the detection and removal of dust particle artifacts in retinal images. We consider as input two or more color fundus images acquired within the same session, in which we assume the artifacts remain in the same position. Our method consists in detecting candidate artifacts via normalized cross correlation with an artifact template, performing segmentation via region growing, and comparing the segmentations in all images. This guarantees that all detections are consistent for all images. The removal stage consists in an inpainting procedure so that the new region does not stand out from the neighboring regions. Encouraging experimental results show the localization of artifacts is effective and the artifacts are successfully removed, while not introducing new artifacts in the color retinal images. © Sociedad Española de Óptica.Universitat Politècnica de València: 2017-U009Recurso electrónicoapplication/pdfengSociedad Espanola de Opticahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85039953172&doi=10.7149%2fOPA.50.4.49075&partnerID=40&md5=ea8de9a65103126204d0ecbaa9cc2273Scopus 56682678200Scopus 24329839300Scopus 7201466399Dust particle artifact detection and removal in retinal imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Artifact localizationDust particle artifactsInpaintingRetinal imageRetinal image enhancementSierra, E.Marrugo Hernández, Andrés GuillermoMillán, M.S.Abramoff, M.D., Garvin, M., Sonka, M., Retinal Imaging and Image Analysis (2010) Biomedical Engineering, IEEE Reviews in, 3, pp. 169-208Willson, R.G., Maimone, M., Johnson, A., Scherr, L., (2005) An optical model for image artifacts produced by dust particles on lenses, pp. 1-8Zhou, C., Lin, S., (2007) "Removal of Image Artifacts Due to Sensor Dust,", pp. 1-8. , AprMora, A.D., Soares, J., Fonseca, J.M., "A template matching technique for artifacts detection in retinal images,", pp. 717-722. , presented at the 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)Niemeijer, M., Abramoff, M.D., van Ginneken, B., Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening (2006) Medical Image Analysis, 10, pp. 888-898Marrugo, A.G., Millan, M.S., Cristóbal, G., Gabarda, S., Abril, H.C., No-reference Quality Metrics for Eye Fundus Imaging (2011) CAIP 2011 LNCS, 6854, pp. 486-493Köhler, T., Budai, A., Kraus, M., Odstrcilik, J., Michelson, G., Hornegger, J., "Automatic no-reference quality assessment for retinal fundus images using vessel segmentation.," (2013) presented at the IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), pp. 95-100Ali Shah, S.A., Laude, A., Faye, I., Tang, T.B., Automated microaneurysm detection in diabetic retinopathy using curvelet transform (2016) J. Biomed. Opt, 21Yang, P., Chen, L., Tian, J., Xu, X., "Dust particle detection in surveillance video using salient visual descriptors," (2016) Computers & Electrical EngineeringChen, L., Zhu, D., Tian, J., Liu, J., "Dust particle detection in traffic surveillance video using motion singularity analysis," (2016) Digit Signal Process, pp. 1-7Marrugo, A.G., Sierra, E., Millan, M.S., (2016) "Dust Particle Detection and Correction in Retinal Images,", , presented at the RIAO-OPTILAS 2016, Pucón, Chile, 268Radke, R., Andra, S., Al-Kofahi, O., Roysam, B., Image change detection algorithms: a systematic survey (2005) Image Processing, IEEE Transactions on, 14, pp. 294-307Marrugo, A.G., Sorel, M., Sroubek, F., Millan, M.S., Retinal image restoration by means of blind deconvolution (2011) J. Biomed. Opt, 16Marrugo, A.G., Millan, M.S., Retinal Image Analysis Oriented to the Clinical Task (2014) Electronic Letters on Computer Vision and Image Analysis, 13, pp. 54-55Gonzalez, R.C., Woods, R.E., Eddins, S.L., (2010) Digital Image Processing Using MATLAB®, , McGraw Hill EducationTsai, D.-M., Lin, C.-T., Fast normalized cross correlation for defect detection (2003) Pattern Recognition Letters, 24, pp. 2625-2631Marrugo, A.G., Millan, M.S., Optic disc segmentation in retinal images (2010) Opt. Pura Apl, 43, pp. 79-86Neubeck, A., Van Gool, L., "Efficient non-maximum suppression," (2006) presented at the Pattern Recognition, 2006.ICPR 2006. 18th International Conference on, 3, pp. 850-855Haralick, R.M., Sternberg, S.R., Zhuang, X., Image analysis using mathematical morphology (1987) Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, pp. 532-550http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_7149OPA_50_4_49075.pdfapplication/pdf9350562https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/1/DOI10_7149OPA_50_4_49075.pdf117f1e2a77bc8b7e482f2bf07909799eMD51TEXTDOI10_7149OPA_50_4_49075.pdf.txtDOI10_7149OPA_50_4_49075.pdf.txtExtracted texttext/plain24992https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/4/DOI10_7149OPA_50_4_49075.pdf.txte53e1e8f5a39cca00c9e9833bf421e9dMD54THUMBNAILDOI10_7149OPA_50_4_49075.pdf.jpgDOI10_7149OPA_50_4_49075.pdf.jpgGenerated Thumbnailimage/jpeg81938https://repositorio.utb.edu.co/bitstream/20.500.12585/8741/5/DOI10_7149OPA_50_4_49075.pdf.jpgaddacd09a160a6f7d2d20cf6b381dc39MD5520.500.12585/8741oai:repositorio.utb.edu.co:20.500.12585/87412023-05-26 16:24:58.92Repositorio Institucional UTBrepositorioutb@utb.edu.co