Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8852
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8852
- Palabra clave:
- Particle swarm optimization
Proportional-integral passivity-based control
Subsynchronous oscillation
Superconducting magnetic energy storage
Benchmarking
Controllers
Electric energy storage
Electric power transmission
Feedback linearization
Magnetic storage
Particle swarm optimization (PSO)
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
Operating condition
Passivity based control
Primary frequencies
Series compensated transmission lines
Sub-synchronous oscillations
Superconducting magnetic energy storage system
Superconducting magnetic energy storages
Electric power system control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_bdd2ad7ca33fe4d9e14c4b67d7710db1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8852 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
title |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
spellingShingle |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach Particle swarm optimization Proportional-integral passivity-based control Subsynchronous oscillation Superconducting magnetic energy storage Benchmarking Controllers Electric energy storage Electric power transmission Feedback linearization Magnetic storage Particle swarm optimization (PSO) Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power Operating condition Passivity based control Primary frequencies Series compensated transmission lines Sub-synchronous oscillations Superconducting magnetic energy storage system Superconducting magnetic energy storages Electric power system control |
title_short |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
title_full |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
title_fullStr |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
title_full_unstemmed |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
title_sort |
Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach |
dc.subject.keywords.none.fl_str_mv |
Particle swarm optimization Proportional-integral passivity-based control Subsynchronous oscillation Superconducting magnetic energy storage Benchmarking Controllers Electric energy storage Electric power transmission Feedback linearization Magnetic storage Particle swarm optimization (PSO) Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power Operating condition Passivity based control Primary frequencies Series compensated transmission lines Sub-synchronous oscillations Superconducting magnetic energy storage system Superconducting magnetic energy storages Electric power system control |
topic |
Particle swarm optimization Proportional-integral passivity-based control Subsynchronous oscillation Superconducting magnetic energy storage Benchmarking Controllers Electric energy storage Electric power transmission Feedback linearization Magnetic storage Particle swarm optimization (PSO) Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power Operating condition Passivity based control Primary frequencies Series compensated transmission lines Sub-synchronous oscillations Superconducting magnetic energy storage system Superconducting magnetic energy storages Electric power system control |
description |
This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calculate the active and reactive power reference values for the SMES system, and these gains are calculated with a particle swarm optimization (PSO) algorithm. The proposed methodology is assessed with a classical PI controller, feedback linearization (FL) controller and a passivity-based PI control (PI-PBC). Operating limits for VSC are also considered, which gives priority to active power over reactive power. The IEEE Second Benchmark model is employed to demonstrate the assessment of the proposed methodology where PI-PBC presents better performance than the classical PI and FL controllers in all the operating conditions considered. © 2018 Elsevier Ltd |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:30Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:30Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Energy Storage; Vol. 20, pp. 163-172 |
dc.identifier.issn.none.fl_str_mv |
2352152X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8852 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.est.2018.09.001 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 36449223500 |
identifier_str_mv |
Journal of Energy Storage; Vol. 20, pp. 163-172 2352152X 10.1016/j.est.2018.09.001 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 36449223500 |
url |
https://hdl.handle.net/20.500.12585/8852 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053785230&doi=10.1016%2fj.est.2018.09.001&partnerID=40&md5=7fab4633151c3c4467fb4579faafa563 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8852/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021566775689216 |
spelling |
2020-03-26T16:32:30Z2020-03-26T16:32:30Z2018Journal of Energy Storage; Vol. 20, pp. 163-1722352152Xhttps://hdl.handle.net/20.500.12585/885210.1016/j.est.2018.09.001Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calculate the active and reactive power reference values for the SMES system, and these gains are calculated with a particle swarm optimization (PSO) algorithm. The proposed methodology is assessed with a classical PI controller, feedback linearization (FL) controller and a passivity-based PI control (PI-PBC). Operating limits for VSC are also considered, which gives priority to active power over reactive power. The IEEE Second Benchmark model is employed to demonstrate the assessment of the proposed methodology where PI-PBC presents better performance than the classical PI and FL controllers in all the operating conditions considered. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015This work was partially supported by the National Scholarship Program of Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053785230&doi=10.1016%2fj.est.2018.09.001&partnerID=40&md5=7fab4633151c3c4467fb4579faafa563Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Particle swarm optimizationProportional-integral passivity-based controlSubsynchronous oscillationSuperconducting magnetic energy storageBenchmarkingControllersElectric energy storageElectric power transmissionFeedback linearizationMagnetic storageParticle swarm optimization (PSO)Reactive powerRobustness (control systems)Superconducting magnetsTwo term control systemsActive and Reactive PowerOperating conditionPassivity based controlPrimary frequenciesSeries compensated transmission linesSub-synchronous oscillationsSuperconducting magnetic energy storage systemSuperconducting magnetic energy storagesElectric power system controlGil-González W.Montoya O.D.Garces A.Yu, Y.N., Electric Power System Dynamics (1983), Academic Press New York (Chapter 5)I.S.W. Group, Terms, definitions and symbols for subsynchronous oscillations (1985) Trans. Power Appl. Sys., PAS-104 (6), pp. 1326-1334Adrees, A., Risk Based Assessment of Subsynchronous Resonance in AC/DC Systems (2017), Springer-Verlag GmbH Cham (Chapter 1)Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Zobaa, A., (2013) Energy Storage – Technologies and Applications, , InTech Rijeka (Chapter 1)Giraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) Green Technologies Conference (GreenTech), 2018, IEEE, pp. 65-70Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems – characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250Arsoy, A.B., Liu, Y., Ribeiro, P.F., Wang, F., StatCom-SMES (2003) IEEE Ind. Appl. Mag., 9 (2), pp. 21-28Ngamroo, I., Robust SMES controller design based on inverse additive perturbation for stabilization of interconnected power systems with wind farms (2010) Energy Convers. Manage., 51 (3), pp. 459-464Ngamroo, I., An optimization of robust SMES with specified structure H controller for power system stabilization considering superconducting magnetic coil size (2011) Energy Convers. Manage., 52 (1), pp. 648-651Shi, J., Tang, Y., Dai, T., Ren, L., Li, J., Cheng, S., Determination of SMES capacity to enhance the dynamic stability of power system (2010) Physica C, 470 (20), pp. 1707-1710. , Proceedings of the 22nd International Symposium on Superconductivity (ISS 2009)Pappachen, A., Fathima, A.P., Load frequency control in deregulated power system integrated with SMES-TCPS combination using ANFIS controller (2016) Int. J. Electr. Power Energy Syst., 82, pp. 519-534Farahani, M., Ganjefar, S., Solving LFC problem in an interconnected power system using superconducting magnetic energy storage (2013) Physica C, 487, pp. 60-66Devotta, J., Rabbani, M., Elangovan, S., Application of superconducting magnetic energy storage unit for damping of subsynchronous oscillations in power systems (1999) Energy Convers. Manage., 40 (1), pp. 23-37Rabbani, M., Devotta, J., Elangovan, S., Multi-mode wide range subsynchronous resonance stabilization using superconducting magnetic energy storage unit (1999) Int. J. Electr. Power Energy Syst., 21 (1), pp. 45-53Farahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39Jing Shi, Yuejin Tang, Li Ren, Jingdong Li, Shijie Cheng, Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Ortega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems, IEEE Trans (2017) Power Syst., 32 (3), pp. 2445-2454Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271Montoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, p. 1Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494Sadeghi, M.S., Vafamand, N., Khooban, M.H., LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems (2016) J. Franklin Inst., 353 (13), pp. 2835-2858Modirkhazeni, A., Almasi, O.N., Khooban, M.H., Improved frequency dynamic in isolated hybrid power system using an intelligent method (2016) Int. J. Electr. Power Energy Syst., 78, pp. 225-238Khooban, M.H., Niknam, T., Sha-Sadeghi, M., A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems (2016) J. Intell. Fuzzy Syst., 30 (5), pp. 2927-2937Hemeida, M.G., Rezk, H., Hamada, M.M., A comprehensive comparison of STATCOM versus SVC-based fuzzy controller for stability improvement of wind farm connected to multi-machine power system (2018) Electr. Eng., 100 (2), pp. 935-951Leon, A., Solsona, J., Valla, M.I., Comparison among nonlinear excitation control strategies used for damping power system oscillations (2012) Energy Convers. Manage., 53 (1), pp. 55-67Hammad, A., El-Sadek, M., Application of a thyristor controlled var compensator for damping subsynchronous oscillations in power systems (1984) IEEE Trans. Power Appl. Syst., (1), pp. 198-212Abi-Samra, N., Smith, R., McDermott, T., Chidester, M., Analysis of thyristor-controlled shunt SSR countermeasures (1985) IEEE Trans. Power Appl. Syst., (3), pp. 583-597Patil, K., Senthil, J., Jiang, J., Mathur, R., Application of STATCOM for damping torsional oscillations in series compensated AC systems (1998) IEEE Trans. Energy Convers., 13 (3), pp. 237-243Padiyar, K., Prabhu, N., Design and performance evaluation of subsynchronous damping controller with STATCOM (2006) IEEE Trans. Power Deliv., 21 (3), pp. 1398-1405Varma, R.K., Salehi, R., SSR mitigation with a new control of PV solar farm as STATCOM (PV-STATCOM) (2017) IEEE Trans. Sustain. Energy, 8 (4), pp. 1473-1483Raju, D.K., Umre, B.S., Junghare, A.S., Babu, B.C., Mitigation of subsynchronous resonance with fractional-order PI based UPFC controller (2017) Mech. Syst. Sig. Process., 85, pp. 698-715Bongiorno, M., Angquist, L., Svensson, J., A novel control strategy for subsynchronous resonance mitigation using SSSC (2008) IEEE Trans. Power Deliv., 23 (2), pp. 1033-1041Thirumalaivasan, R., Janaki, M., Prabhu, N., Damping of SSR using subsynchronous current suppressor with SSSC (2013) IEEE Trans. Power Syst., 28 (1), pp. 64-74Rajaram, T., Reddy, J.M., Xu, Y., Kalman filter based detection and mitigation of subsynchronous resonance with SSSC (2017) IEEE Trans. Power Syst., 32 (2), pp. 1400-1409Zhu, W., Spee, R., Mohler, R., Alexander, G., Mittelstadt, W., Maratukulam, D., An EMTP study of SSR mitigation using the thyristor controlled series capacitor (1995) IEEE Trans. Power Deliv., 10 (3), pp. 1479-1485Wu, C.J., Lee, Y.S., Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations (1993) IEEE Trans. Energy Convers., 8 (1), pp. 63-70Rahim, A., Nowicki, E., A robust damping controller for SMES using loop-shaping technique (2005) Int. J. Electr. Power Energy Syst., 27 (5), pp. 465-471Wang, L., Tseng, H., Suppression of common-mode torsional oscillations of nonidentical turbine-generators using SMES (1999) IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233), vol. 1, pp. 117-122Sedighizadeh, M., Esmaili, M., Parvaneh, H., Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework (2018) J. Energy Storage, 18, pp. 498-508Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Soman, R., Ravindra, H., Huang, X., Schoder, K., Steurer, M., Yuan, W., Zhang, M., Chen, X., Preliminary investigation on economic aspects of superconducting magnetic energy storage (SMES) systems and high-temperature superconducting (HTS) transformers (2018) IEEE Trans. Appl. Supercond., 28 (4), pp. 1-5Shandilya, S.K., Shandilya, S.K., Shandilya, S., Deep, K., Nagar, A.K., Handbook of Research on Soft Computing and Nature-inspired Algorithms (2017)Gil-González, W.J., Mora-Flórez, J.J., Pérez-Londoñ, S., Comparative analysis of metaheuristics optimization techniques to parameterize fault locators for power distribution systems (2013) Ing. Compet., 15 (1), pp. 103-115Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Ortega, R., der Schaft, A.V., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466Pérez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890Perko, L., Differential equations and dynamical systems, vol. 7 (2013), Springer Science & Business MediaA. ABB, Grid Systems HVDC. It's Time to Connect-technical Description of HVDC Light® Technology, Tech. Rep. (2013), ABB, Technical ReportBeerten, J., Cole, S., Belmans, R., Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control (2014) IEEE Trans. Power Syst., 29 (1), pp. 34-42I. S. R. W. Group, Second benchmark model for computer simulation of subsynchronous resonance (1985) IEEE Trans. Power App. Syst., PAS-104 (5), pp. 1057-1066Luongo, C.A., Baldwin, T., Ribeiro, P., Weber, C.M., A 100 MJ SMES demonstration at FSU-CAPS (2003) IEEE Trans. Appl. Supercond., 13 (2), pp. 1800-1805http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8852/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8852oai:repositorio.utb.edu.co:20.500.12585/88522021-02-02 14:45:19.149Repositorio Institucional UTBrepositorioutb@utb.edu.co |