Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach

This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8852
Acceso en línea:
https://hdl.handle.net/20.500.12585/8852
Palabra clave:
Particle swarm optimization
Proportional-integral passivity-based control
Subsynchronous oscillation
Superconducting magnetic energy storage
Benchmarking
Controllers
Electric energy storage
Electric power transmission
Feedback linearization
Magnetic storage
Particle swarm optimization (PSO)
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
Operating condition
Passivity based control
Primary frequencies
Series compensated transmission lines
Sub-synchronous oscillations
Superconducting magnetic energy storage system
Superconducting magnetic energy storages
Electric power system control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bdd2ad7ca33fe4d9e14c4b67d7710db1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8852
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
title Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
spellingShingle Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
Particle swarm optimization
Proportional-integral passivity-based control
Subsynchronous oscillation
Superconducting magnetic energy storage
Benchmarking
Controllers
Electric energy storage
Electric power transmission
Feedback linearization
Magnetic storage
Particle swarm optimization (PSO)
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
Operating condition
Passivity based control
Primary frequencies
Series compensated transmission lines
Sub-synchronous oscillations
Superconducting magnetic energy storage system
Superconducting magnetic energy storages
Electric power system control
title_short Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
title_full Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
title_fullStr Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
title_full_unstemmed Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
title_sort Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach
dc.subject.keywords.none.fl_str_mv Particle swarm optimization
Proportional-integral passivity-based control
Subsynchronous oscillation
Superconducting magnetic energy storage
Benchmarking
Controllers
Electric energy storage
Electric power transmission
Feedback linearization
Magnetic storage
Particle swarm optimization (PSO)
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
Operating condition
Passivity based control
Primary frequencies
Series compensated transmission lines
Sub-synchronous oscillations
Superconducting magnetic energy storage system
Superconducting magnetic energy storages
Electric power system control
topic Particle swarm optimization
Proportional-integral passivity-based control
Subsynchronous oscillation
Superconducting magnetic energy storage
Benchmarking
Controllers
Electric energy storage
Electric power transmission
Feedback linearization
Magnetic storage
Particle swarm optimization (PSO)
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
Operating condition
Passivity based control
Primary frequencies
Series compensated transmission lines
Sub-synchronous oscillations
Superconducting magnetic energy storage system
Superconducting magnetic energy storages
Electric power system control
description This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calculate the active and reactive power reference values for the SMES system, and these gains are calculated with a particle swarm optimization (PSO) algorithm. The proposed methodology is assessed with a classical PI controller, feedback linearization (FL) controller and a passivity-based PI control (PI-PBC). Operating limits for VSC are also considered, which gives priority to active power over reactive power. The IEEE Second Benchmark model is employed to demonstrate the assessment of the proposed methodology where PI-PBC presents better performance than the classical PI and FL controllers in all the operating conditions considered. © 2018 Elsevier Ltd
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:30Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:30Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Energy Storage; Vol. 20, pp. 163-172
dc.identifier.issn.none.fl_str_mv 2352152X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8852
dc.identifier.doi.none.fl_str_mv 10.1016/j.est.2018.09.001
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57191493648
56919564100
36449223500
identifier_str_mv Journal of Energy Storage; Vol. 20, pp. 163-172
2352152X
10.1016/j.est.2018.09.001
Universidad Tecnológica de Bolívar
Repositorio UTB
57191493648
56919564100
36449223500
url https://hdl.handle.net/20.500.12585/8852
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053785230&doi=10.1016%2fj.est.2018.09.001&partnerID=40&md5=7fab4633151c3c4467fb4579faafa563
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8852/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021566775689216
spelling 2020-03-26T16:32:30Z2020-03-26T16:32:30Z2018Journal of Energy Storage; Vol. 20, pp. 163-1722352152Xhttps://hdl.handle.net/20.500.12585/885210.1016/j.est.2018.09.001Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper proposes a methodology to control the active and reactive power of a superconducting magnetic energy storage (SMES) system to alleviate subsynchronous oscillations (SSO) in power systems with series compensated transmission lines. Primary frequency and voltage control are employed to calculate the active and reactive power reference values for the SMES system, and these gains are calculated with a particle swarm optimization (PSO) algorithm. The proposed methodology is assessed with a classical PI controller, feedback linearization (FL) controller and a passivity-based PI control (PI-PBC). Operating limits for VSC are also considered, which gives priority to active power over reactive power. The IEEE Second Benchmark model is employed to demonstrate the assessment of the proposed methodology where PI-PBC presents better performance than the classical PI and FL controllers in all the operating conditions considered. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015This work was partially supported by the National Scholarship Program of Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053785230&doi=10.1016%2fj.est.2018.09.001&partnerID=40&md5=7fab4633151c3c4467fb4579faafa563Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Particle swarm optimizationProportional-integral passivity-based controlSubsynchronous oscillationSuperconducting magnetic energy storageBenchmarkingControllersElectric energy storageElectric power transmissionFeedback linearizationMagnetic storageParticle swarm optimization (PSO)Reactive powerRobustness (control systems)Superconducting magnetsTwo term control systemsActive and Reactive PowerOperating conditionPassivity based controlPrimary frequenciesSeries compensated transmission linesSub-synchronous oscillationsSuperconducting magnetic energy storage systemSuperconducting magnetic energy storagesElectric power system controlGil-González W.Montoya O.D.Garces A.Yu, Y.N., Electric Power System Dynamics (1983), Academic Press New York (Chapter 5)I.S.W. Group, Terms, definitions and symbols for subsynchronous oscillations (1985) Trans. Power Appl. Sys., PAS-104 (6), pp. 1326-1334Adrees, A., Risk Based Assessment of Subsynchronous Resonance in AC/DC Systems (2017), Springer-Verlag GmbH Cham (Chapter 1)Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Zobaa, A., (2013) Energy Storage – Technologies and Applications, , InTech Rijeka (Chapter 1)Giraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) Green Technologies Conference (GreenTech), 2018, IEEE, pp. 65-70Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems – characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250Arsoy, A.B., Liu, Y., Ribeiro, P.F., Wang, F., StatCom-SMES (2003) IEEE Ind. Appl. Mag., 9 (2), pp. 21-28Ngamroo, I., Robust SMES controller design based on inverse additive perturbation for stabilization of interconnected power systems with wind farms (2010) Energy Convers. Manage., 51 (3), pp. 459-464Ngamroo, I., An optimization of robust SMES with specified structure H controller for power system stabilization considering superconducting magnetic coil size (2011) Energy Convers. Manage., 52 (1), pp. 648-651Shi, J., Tang, Y., Dai, T., Ren, L., Li, J., Cheng, S., Determination of SMES capacity to enhance the dynamic stability of power system (2010) Physica C, 470 (20), pp. 1707-1710. , Proceedings of the 22nd International Symposium on Superconductivity (ISS 2009)Pappachen, A., Fathima, A.P., Load frequency control in deregulated power system integrated with SMES-TCPS combination using ANFIS controller (2016) Int. J. Electr. Power Energy Syst., 82, pp. 519-534Farahani, M., Ganjefar, S., Solving LFC problem in an interconnected power system using superconducting magnetic energy storage (2013) Physica C, 487, pp. 60-66Devotta, J., Rabbani, M., Elangovan, S., Application of superconducting magnetic energy storage unit for damping of subsynchronous oscillations in power systems (1999) Energy Convers. Manage., 40 (1), pp. 23-37Rabbani, M., Devotta, J., Elangovan, S., Multi-mode wide range subsynchronous resonance stabilization using superconducting magnetic energy storage unit (1999) Int. J. Electr. Power Energy Syst., 21 (1), pp. 45-53Farahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39Jing Shi, Yuejin Tang, Li Ren, Jingdong Li, Shijie Cheng, Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Ortega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems, IEEE Trans (2017) Power Syst., 32 (3), pp. 2445-2454Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271Montoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, p. 1Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494Sadeghi, M.S., Vafamand, N., Khooban, M.H., LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems (2016) J. Franklin Inst., 353 (13), pp. 2835-2858Modirkhazeni, A., Almasi, O.N., Khooban, M.H., Improved frequency dynamic in isolated hybrid power system using an intelligent method (2016) Int. J. Electr. Power Energy Syst., 78, pp. 225-238Khooban, M.H., Niknam, T., Sha-Sadeghi, M., A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems (2016) J. Intell. Fuzzy Syst., 30 (5), pp. 2927-2937Hemeida, M.G., Rezk, H., Hamada, M.M., A comprehensive comparison of STATCOM versus SVC-based fuzzy controller for stability improvement of wind farm connected to multi-machine power system (2018) Electr. Eng., 100 (2), pp. 935-951Leon, A., Solsona, J., Valla, M.I., Comparison among nonlinear excitation control strategies used for damping power system oscillations (2012) Energy Convers. Manage., 53 (1), pp. 55-67Hammad, A., El-Sadek, M., Application of a thyristor controlled var compensator for damping subsynchronous oscillations in power systems (1984) IEEE Trans. Power Appl. Syst., (1), pp. 198-212Abi-Samra, N., Smith, R., McDermott, T., Chidester, M., Analysis of thyristor-controlled shunt SSR countermeasures (1985) IEEE Trans. Power Appl. Syst., (3), pp. 583-597Patil, K., Senthil, J., Jiang, J., Mathur, R., Application of STATCOM for damping torsional oscillations in series compensated AC systems (1998) IEEE Trans. Energy Convers., 13 (3), pp. 237-243Padiyar, K., Prabhu, N., Design and performance evaluation of subsynchronous damping controller with STATCOM (2006) IEEE Trans. Power Deliv., 21 (3), pp. 1398-1405Varma, R.K., Salehi, R., SSR mitigation with a new control of PV solar farm as STATCOM (PV-STATCOM) (2017) IEEE Trans. Sustain. Energy, 8 (4), pp. 1473-1483Raju, D.K., Umre, B.S., Junghare, A.S., Babu, B.C., Mitigation of subsynchronous resonance with fractional-order PI based UPFC controller (2017) Mech. Syst. Sig. Process., 85, pp. 698-715Bongiorno, M., Angquist, L., Svensson, J., A novel control strategy for subsynchronous resonance mitigation using SSSC (2008) IEEE Trans. Power Deliv., 23 (2), pp. 1033-1041Thirumalaivasan, R., Janaki, M., Prabhu, N., Damping of SSR using subsynchronous current suppressor with SSSC (2013) IEEE Trans. Power Syst., 28 (1), pp. 64-74Rajaram, T., Reddy, J.M., Xu, Y., Kalman filter based detection and mitigation of subsynchronous resonance with SSSC (2017) IEEE Trans. Power Syst., 32 (2), pp. 1400-1409Zhu, W., Spee, R., Mohler, R., Alexander, G., Mittelstadt, W., Maratukulam, D., An EMTP study of SSR mitigation using the thyristor controlled series capacitor (1995) IEEE Trans. Power Deliv., 10 (3), pp. 1479-1485Wu, C.J., Lee, Y.S., Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations (1993) IEEE Trans. Energy Convers., 8 (1), pp. 63-70Rahim, A., Nowicki, E., A robust damping controller for SMES using loop-shaping technique (2005) Int. J. Electr. Power Energy Syst., 27 (5), pp. 465-471Wang, L., Tseng, H., Suppression of common-mode torsional oscillations of nonidentical turbine-generators using SMES (1999) IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233), vol. 1, pp. 117-122Sedighizadeh, M., Esmaili, M., Parvaneh, H., Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework (2018) J. Energy Storage, 18, pp. 498-508Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Soman, R., Ravindra, H., Huang, X., Schoder, K., Steurer, M., Yuan, W., Zhang, M., Chen, X., Preliminary investigation on economic aspects of superconducting magnetic energy storage (SMES) systems and high-temperature superconducting (HTS) transformers (2018) IEEE Trans. Appl. Supercond., 28 (4), pp. 1-5Shandilya, S.K., Shandilya, S.K., Shandilya, S., Deep, K., Nagar, A.K., Handbook of Research on Soft Computing and Nature-inspired Algorithms (2017)Gil-González, W.J., Mora-Flórez, J.J., Pérez-Londoñ, S., Comparative analysis of metaheuristics optimization techniques to parameterize fault locators for power distribution systems (2013) Ing. Compet., 15 (1), pp. 103-115Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Ortega, R., der Schaft, A.V., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466Pérez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890Perko, L., Differential equations and dynamical systems, vol. 7 (2013), Springer Science & Business MediaA. ABB, Grid Systems HVDC. It's Time to Connect-technical Description of HVDC Light® Technology, Tech. Rep. (2013), ABB, Technical ReportBeerten, J., Cole, S., Belmans, R., Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control (2014) IEEE Trans. Power Syst., 29 (1), pp. 34-42I. S. R. W. Group, Second benchmark model for computer simulation of subsynchronous resonance (1985) IEEE Trans. Power App. Syst., PAS-104 (5), pp. 1057-1066Luongo, C.A., Baldwin, T., Ribeiro, P., Weber, C.M., A 100 MJ SMES demonstration at FSU-CAPS (2003) IEEE Trans. Appl. Supercond., 13 (2), pp. 1800-1805http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8852/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8852oai:repositorio.utb.edu.co:20.500.12585/88522021-02-02 14:45:19.149Repositorio Institucional UTBrepositorioutb@utb.edu.co