Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q

In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and...

Full description

Autores:
Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9982
Acceso en línea:
https://hdl.handle.net/20.500.12585/9982
https://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/meta
Palabra clave:
Computer circuits
Decision making
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bca484a602bf8078c87da97ee43b3205
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9982
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
title Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
spellingShingle Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
Computer circuits
Decision making
LEMB
title_short Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
title_full Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
title_fullStr Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
title_full_unstemmed Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
title_sort Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Q
dc.creator.fl_str_mv Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
dc.contributor.author.none.fl_str_mv Cárdenas, Y
Carrillo, G E
Alviz, A
Carrillo, G
dc.subject.keywords.spa.fl_str_mv Computer circuits
Decision making
topic Computer circuits
Decision making
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and qualitative optics supported by the experts. Thus, this work proposes a methodology of fuzzy Mandani type logic that allows the analysis of energy transformation processes (such as internal combustion engines) based on T2 and Q statistics, as a way to identify whether the operation limits are kept within the normal or exceed the limits, achieving to identify the anomaly in the process. In the initial stage, MATLAB implements two diffuse systems; the first system aims to determine the impact variables have on the generation of an anomaly, without identifying the type of defect. In the second stage, it's defined as a function of the number guests, the kind of monster that occurs in the observations made from the transition range in the operation of the system analyzed, until the last measurement obtained. In the third stage, the statistics T2, Q, and its limits are determined from the operating variables of the selected system. Finally, the previously calculated statistics are graphically processed in the diffuse systems. The results obtained in this work show that the analysis of processes or phenomena based on qualitative observations, the methodology implemented, is a useful tool for decision making in the industrial sector.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10
dc.date.accessioned.none.fl_str_mv 2021-02-10T20:28:59Z
dc.date.available.none.fl_str_mv 2021-02-10T20:28:59Z
dc.date.submitted.none.fl_str_mv 2021-02-08
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Y Cárdenas et al 2020 J. Phys.: Conf. Ser. 1708 012034
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9982
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/meta
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1708/1/012034
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Y Cárdenas et al 2020 J. Phys.: Conf. Ser. 1708 012034
10.1088/1742-6596/1708/1/012034
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9982
https://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/meta
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series 1708 (2020) 012034
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/1/140.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/4/140.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/5/140.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
59fd30535af81fe45f3a398f1373442e
e20ad307a1c5f3f25af9304a7a7c86b6
4dddbe26afbda60411599d9eede5a441
d8bed5364afd8a48bd2ace07814f5fad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021797562023936
spelling Cárdenas, Y70344b45-b17b-43d3-8513-8f568098aea6Carrillo, G Ed1de93af-aa79-478f-9d48-0f302581d99fAlviz, Afb38fec4-6d03-488d-8cac-a3ca08b71552Carrillo, Ga1e8c876-c03d-48dd-a0bd-1fabfc1444932021-02-10T20:28:59Z2021-02-10T20:28:59Z2020-102021-02-08Y Cárdenas et al 2020 J. Phys.: Conf. Ser. 1708 012034https://hdl.handle.net/20.500.12585/9982https://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012034/meta10.1088/1742-6596/1708/1/012034Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and qualitative optics supported by the experts. Thus, this work proposes a methodology of fuzzy Mandani type logic that allows the analysis of energy transformation processes (such as internal combustion engines) based on T2 and Q statistics, as a way to identify whether the operation limits are kept within the normal or exceed the limits, achieving to identify the anomaly in the process. In the initial stage, MATLAB implements two diffuse systems; the first system aims to determine the impact variables have on the generation of an anomaly, without identifying the type of defect. In the second stage, it's defined as a function of the number guests, the kind of monster that occurs in the observations made from the transition range in the operation of the system analyzed, until the last measurement obtained. In the third stage, the statistics T2, Q, and its limits are determined from the operating variables of the selected system. Finally, the previously calculated statistics are graphically processed in the diffuse systems. The results obtained in this work show that the analysis of processes or phenomena based on qualitative observations, the methodology implemented, is a useful tool for decision making in the industrial sector.8 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series 1708 (2020) 012034Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics T2and Qinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85Computer circuitsDecision makingLEMBCartagena de IndiasInvestigadoresLi Z, Sun L, Geng Y, Dong H, Ren J, Liug Z, Tian X, Yabara H, Higanoa Y 2017 Examining industrial structure changes and corresponding carbon emissionreduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan J. Clean. Prod. 162(61) 70-82Islam J, Hu Y, Haltas I, Balta-ozkan N, G Jr, Varga L 2018 Reducing industrial energy demand in the UK: A review of energy e ffi ciency technologies and energy-saving potentia in selected sectors Renew. Sustain. Energy Rev. 94(23) 1153–1178Franciosi C, Voisin A, Miranda S, Riemma S, Iung B 2020 Measuring maintenance impacts on the sustainability of manufacturing industries: from a systematic literature review to a framework proposal J. Clean. Prod. 260(14) 121-129Waligórski M, Batura K, Kucal K, Merkisz J 2020 Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement Measurement 12(13) 123-129Diéguez M, Urroz J, Sáinz D, Machin J, Arana M, Gandía L 2018 Characterization of combustion anomalies in a hydrogen-fueled 1. 4 L commercial spark-ignition engine using in-cylinder pressure, blockengine vibration, and acoustic measurements Energy Convers. Manag. 172(13) 67–80Alblawi A 2020 Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks Energy Reports 6(13) 1083–1096Khelil Y, Graton G, Djeziri M, Ouladsine M, R Outbib 2012 Fault detection and isolation in marine diesel engines-a generic methodology IFAC Proc. 45(20) 964–969Tayarani S S, Khorasani K Fault detection and isolation of gas turbine engines using a bank of neural networks J. Process Control 36(22) 41-48Delvecchio S, Bonfiglio P, Pompoli F 2018 Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques Mech. Syst. Signal Process 99(14) 661–683Çeven S, Albayrak A, Bayır R 2020 Real-time range estimation in electric vehicles using fuzzy Comput. Electr. Eng. 34(13) 83-89Ansari F 2020 Cost-based text understanding to improve maintenance knowledge intelligence in manufacturing enterprises Comput. Ind. Eng. 141(12) 106-115Lin Q, Zhang Y, Yang S, Ma S, Zhang T, Xiao Q 2020 Full length Article A self-learning and selfoptimizing framework for the fault diagnosis knowledge base in a workshop Robot. Comput. Integer Manuf. 65(12) 101-121Tso W, Burnak B, Pistikopoulos E 2020 HY-POP: Hyperparameter optimization of machine learning models through parametric programming Comput. Chem. Eng. 139(13) 106-113Sangha M, Gomm J, Yu D, Page G 2005 Fault detection and identification of automotive engines using neural networks IFAC Proc. 38(12005) 272–277Zumoffen D 2008 Desarrollo de Sistemas de Diagnóstico de Fallas Integrado al Diseño de Control Tolerante a Fallas en Procesos Químicos (Colombia: Universidad Nacional de Rosario)http://purl.org/coar/resource_type/c_c94fCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINAL140.pdf140.pdfPonenciaapplication/pdf1282436https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/1/140.pdf59fd30535af81fe45f3a398f1373442eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT140.pdf.txt140.pdf.txtExtracted texttext/plain22196https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/4/140.pdf.txt4dddbe26afbda60411599d9eede5a441MD54THUMBNAIL140.pdf.jpg140.pdf.jpgGenerated Thumbnailimage/jpeg34576https://repositorio.utb.edu.co/bitstream/20.500.12585/9982/5/140.pdf.jpgd8bed5364afd8a48bd2ace07814f5fadMD5520.500.12585/9982oai:repositorio.utb.edu.co:20.500.12585/99822021-02-15 12:46:09.52Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=