A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals

This paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipo...

Full description

Autores:
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12102
Acceso en línea:
https://hdl.handle.net/20.500.12585/12102
https://doi.org/10.1016/j.rineng.2022.100689
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bc00d970b965bb2909e7f83be4a6602f
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12102
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
title A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
spellingShingle A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
title_full A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
title_fullStr A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
title_full_unstemmed A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
title_sort A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
dc.creator.fl_str_mv Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Gil-González, Walter
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipolar DC networks. Additionally, the proposed convex model guarantees that global optimum of the problem is found, which ensures minimal power losses in the bipolar DC distribution grid branches, as the total monopolar load consumption has been balanced at the substation's terminals. In addition, an optimal load balancing improves the voltage profiles due to current redistribution between the positive and negative poles. Numerical results in the 21- and 85-bus test feeders and a comparison with three metaheuristic techniques show the effectiveness of the proposed convex model in reducing the total grid imbalance while minimizing the power losses and improving the voltage profiles.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-14T13:51:16Z
dc.date.available.none.fl_str_mv 2023-07-14T13:51:16Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12102
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.rineng.2022.100689
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12102
https://doi.org/10.1016/j.rineng.2022.100689
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Results in Engineering Volume 16, December 2022, 100689
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/1/1-s2.0-S2590123022003590-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/4/1-s2.0-S2590123022003590-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/5/1-s2.0-S2590123022003590-main.pdf.jpg
bitstream.checksum.fl_str_mv ed170c02a39fb3298a0f4bfbc42353e0
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
6034b41b52a779f529088cddfe676380
4d78303c2a4acdb5d1e9871346b77183
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397592854265856
spelling Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba39849Gil-González, Walter31e41d1d-191e-4bdd-b623-55ce85a65b9c2023-07-14T13:51:16Z2023-07-14T13:51:16Z20222023Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689https://hdl.handle.net/20.500.12585/12102https://doi.org/10.1016/j.rineng.2022.100689Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipolar DC networks. Additionally, the proposed convex model guarantees that global optimum of the problem is found, which ensures minimal power losses in the bipolar DC distribution grid branches, as the total monopolar load consumption has been balanced at the substation's terminals. In addition, an optimal load balancing improves the voltage profiles due to current redistribution between the positive and negative poles. Numerical results in the 21- and 85-bus test feeders and a comparison with three metaheuristic techniques show the effectiveness of the proposed convex model in reducing the total grid imbalance while minimizing the power losses and improving the voltage profiles.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Engineering Volume 16, December 2022, 100689A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasZaimovic, T. Setting speed-limit on Industry 4.0- A n outlook of power-mix and grid capacity challenge (2019) Procedia Computer Science, 158, pp. 107-115. Cited 7 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2019.09.033Aljinović, A., Gjeldum, N., Bilić, B., Mladineo, M. Optimization of industry 4.0 implementation selection process towards enhancement of a manual assembly line (2022) Energies, 15 (1), art. no. 30. Cited 5 times. https://www.mdpi.com/1996-1073/15/1/30/pdf doi: 10.3390/en15010030Zhu, H., Zhu, M., Zhang, J., Cai, X., Dai, N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid (2016) 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, art. no. 7512892, pp. 3728-3733. Cited 9 times. ISBN: 978-150901210-7 doi: 10.1109/IPEMC.2016.7512892Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Guo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (Open Access) (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166Yang, M., Zhang, R., Zhou, N., Wang, Q. Unbalanced voltage control of bipolar DC microgrid based on distributed cooperative control (2020) Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications, ICIEA 2020, art. no. 9248177, pp. 339-344. Cited 6 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9248065 ISBN: 978-172815169-4 doi: 10.1109/ICIEA48937.2020.9248177Khairnar, S.K., Hadpe, S.S., Shriwastava, R.G., Khule, S.S. Fault detection and diagnosis of monopolar configured VSC based high voltage direct current transmission line, Global Transitions Proceedings doi:10.1016/j.gltp.2022.04.010.Rivera, S., Lizana F., R., Kouro, S., Dragicevic, T., Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies (2021) IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2), art. no. 9036877, pp. 1192-1204. Cited 56 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2020.2980994Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method (Open Access) (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108357. Cited 10 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108357Montoya, O.D., Gil-González, W., Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals (2022) Electric Power Systems Research, 211, art. no. 108264. Cited 5 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108264Medina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914Garces, A., Montoya, O.D., Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits (Open Access) (2022) IEEE Transactions on Power Systems, 37 (5), pp. 4098-4101. Cited 7 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3181851Montoya, O.D., Gil-González, W., Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals (Open Access) (2022) Electric Power Systems Research, 211, art. no. 108264. Cited 5 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108264im, J., Cho, J., Kim, H., Cho, Y., Lee, H. Power flow calculation method of DC distribution network for actual power system (2020) KEPCO J. Electric Power Energy, 6 (4), pp. 419-425. Cited 7 times.Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Optimal power flow for bipolar DC microgrids (Open Access) (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108375. Cited 9 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108375Liao, J., Zhou, N., Wang, Q., Chi, Y. Load-Switching Strategy for Voltage Balancing of Bipolar DC Distribution Networks Based on Optimal Automatic Commutation Algorithm (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (4), art. no. 9351555, pp. 2966-2979. Cited 14 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2021.3057852Chew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (Open Access) (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817MacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522Lee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 23 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733Montoya, O.D., Arias-Londoño, A., Grisales-Noreña, L.F., Barrios, J.Á., Chamorro, H.R. Optimal demand reconfiguration in three-phase distribution grids using an mi-convex model (2021) Symmetry, 13 (7). Cited 9 times. https://www.mdpi.com/2073-8994/13/7/1124/pdfLubin, M., Yamangil, E., Bent, R., Vielma, J.P. Polyhedral approximation in mixed-integer convex optimization (Open Access) (2018) Mathematical Programming, 172 (1-2), pp. 139-168. Cited 29 times. http://www.springerlink.com/ doi: 10.1007/s10107-017-1191-yMarini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Montoya, O.D., Medina-Quesada, Á., Hernández, J.C. Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers (Open Access) (2022) Electronics (Switzerland), 11 (13), art. no. 2034. Cited 5 times. https://www.mdpi.com/2079-9292/11/13/2034/pdf?version=1656469417 doi: 10.3390/electronics11132034Montoya, O.D., Alarcon-Villamil, J.A., Hernández, J.C. Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses (Open Access) (2021) Energies, 14 (15), art. no. 4535. Cited 10 times. https://www.mdpi.com/1996-1073/14/15/4535/pdf doi: 10.3390/en14154535Montoya, O.D., Gil-González, W., Grisales-Norena, L., Orozco-Henao, C., Serra, F. Economic sispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models (2019) Energies, 12 (23), art. no. 4494. Cited 32 times. https://www.mdpi.com/1996-1073/12/23 doi: 10.3390/en12234494http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2590123022003590-main.pdf1-s2.0-S2590123022003590-main.pdfapplication/pdf900859https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/1/1-s2.0-S2590123022003590-main.pdfed170c02a39fb3298a0f4bfbc42353e0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2590123022003590-main.pdf.txt1-s2.0-S2590123022003590-main.pdf.txtExtracted texttext/plain48173https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/4/1-s2.0-S2590123022003590-main.pdf.txt6034b41b52a779f529088cddfe676380MD54THUMBNAIL1-s2.0-S2590123022003590-main.pdf.jpg1-s2.0-S2590123022003590-main.pdf.jpgGenerated Thumbnailimage/jpeg8594https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/5/1-s2.0-S2590123022003590-main.pdf.jpg4d78303c2a4acdb5d1e9871346b77183MD5520.500.12585/12102oai:repositorio.utb.edu.co:20.500.12585/121022023-07-15 00:17:29.775Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=