A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
This paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipo...
- Autores:
-
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Gil-González, Walter
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12102
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12102
https://doi.org/10.1016/j.rineng.2022.100689
- Palabra clave:
- Microgrid;
DC-DC Converter;
Electric Potential
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_bc00d970b965bb2909e7f83be4a6602f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12102 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
title |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
spellingShingle |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals Microgrid; DC-DC Converter; Electric Potential LEMB |
title_short |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
title_full |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
title_fullStr |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
title_full_unstemmed |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
title_sort |
A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Molina-Cabrera, Alexander Gil-González, Walter |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Molina-Cabrera, Alexander Gil-González, Walter |
dc.subject.keywords.spa.fl_str_mv |
Microgrid; DC-DC Converter; Electric Potential |
topic |
Microgrid; DC-DC Converter; Electric Potential LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipolar DC networks. Additionally, the proposed convex model guarantees that global optimum of the problem is found, which ensures minimal power losses in the bipolar DC distribution grid branches, as the total monopolar load consumption has been balanced at the substation's terminals. In addition, an optimal load balancing improves the voltage profiles due to current redistribution between the positive and negative poles. Numerical results in the 21- and 85-bus test feeders and a comparison with three metaheuristic techniques show the effectiveness of the proposed convex model in reducing the total grid imbalance while minimizing the power losses and improving the voltage profiles. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-14T13:51:16Z |
dc.date.available.none.fl_str_mv |
2023-07-14T13:51:16Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12102 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.rineng.2022.100689 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12102 https://doi.org/10.1016/j.rineng.2022.100689 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Results in Engineering Volume 16, December 2022, 100689 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/1/1-s2.0-S2590123022003590-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/4/1-s2.0-S2590123022003590-main.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/5/1-s2.0-S2590123022003590-main.pdf.jpg |
bitstream.checksum.fl_str_mv |
ed170c02a39fb3298a0f4bfbc42353e0 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 6034b41b52a779f529088cddfe676380 4d78303c2a4acdb5d1e9871346b77183 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021676601442304 |
spelling |
Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba39849Gil-González, Walter31e41d1d-191e-4bdd-b623-55ce85a65b9c2023-07-14T13:51:16Z2023-07-14T13:51:16Z20222023Montoya, O. D., Molina-Cabrera, A., & Gil-González, W. (2022). A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals. Results in Engineering, 16(100689), 100689. https://doi.org/10.1016/j.rineng.2022.100689https://hdl.handle.net/20.500.12585/12102https://doi.org/10.1016/j.rineng.2022.100689Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipolar DC networks. Additionally, the proposed convex model guarantees that global optimum of the problem is found, which ensures minimal power losses in the bipolar DC distribution grid branches, as the total monopolar load consumption has been balanced at the substation's terminals. In addition, an optimal load balancing improves the voltage profiles due to current redistribution between the positive and negative poles. Numerical results in the 21- and 85-bus test feeders and a comparison with three metaheuristic techniques show the effectiveness of the proposed convex model in reducing the total grid imbalance while minimizing the power losses and improving the voltage profiles.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Engineering Volume 16, December 2022, 100689A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasZaimovic, T. Setting speed-limit on Industry 4.0- A n outlook of power-mix and grid capacity challenge (2019) Procedia Computer Science, 158, pp. 107-115. Cited 7 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2019.09.033Aljinović, A., Gjeldum, N., Bilić, B., Mladineo, M. Optimization of industry 4.0 implementation selection process towards enhancement of a manual assembly line (2022) Energies, 15 (1), art. no. 30. Cited 5 times. https://www.mdpi.com/1996-1073/15/1/30/pdf doi: 10.3390/en15010030Zhu, H., Zhu, M., Zhang, J., Cai, X., Dai, N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid (2016) 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, art. no. 7512892, pp. 3728-3733. Cited 9 times. ISBN: 978-150901210-7 doi: 10.1109/IPEMC.2016.7512892Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Guo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (Open Access) (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166Yang, M., Zhang, R., Zhou, N., Wang, Q. Unbalanced voltage control of bipolar DC microgrid based on distributed cooperative control (2020) Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications, ICIEA 2020, art. no. 9248177, pp. 339-344. Cited 6 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9248065 ISBN: 978-172815169-4 doi: 10.1109/ICIEA48937.2020.9248177Khairnar, S.K., Hadpe, S.S., Shriwastava, R.G., Khule, S.S. Fault detection and diagnosis of monopolar configured VSC based high voltage direct current transmission line, Global Transitions Proceedings doi:10.1016/j.gltp.2022.04.010.Rivera, S., Lizana F., R., Kouro, S., Dragicevic, T., Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies (2021) IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2), art. no. 9036877, pp. 1192-1204. Cited 56 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2020.2980994Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method (Open Access) (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108357. Cited 10 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108357Montoya, O.D., Gil-González, W., Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals (2022) Electric Power Systems Research, 211, art. no. 108264. Cited 5 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108264Medina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914Garces, A., Montoya, O.D., Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits (Open Access) (2022) IEEE Transactions on Power Systems, 37 (5), pp. 4098-4101. Cited 7 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3181851Montoya, O.D., Gil-González, W., Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals (Open Access) (2022) Electric Power Systems Research, 211, art. no. 108264. Cited 5 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108264im, J., Cho, J., Kim, H., Cho, Y., Lee, H. Power flow calculation method of DC distribution network for actual power system (2020) KEPCO J. Electric Power Energy, 6 (4), pp. 419-425. Cited 7 times.Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Optimal power flow for bipolar DC microgrids (Open Access) (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108375. Cited 9 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108375Liao, J., Zhou, N., Wang, Q., Chi, Y. Load-Switching Strategy for Voltage Balancing of Bipolar DC Distribution Networks Based on Optimal Automatic Commutation Algorithm (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (4), art. no. 9351555, pp. 2966-2979. Cited 14 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2021.3057852Chew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (Open Access) (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817MacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522Lee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 23 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733Montoya, O.D., Arias-Londoño, A., Grisales-Noreña, L.F., Barrios, J.Á., Chamorro, H.R. Optimal demand reconfiguration in three-phase distribution grids using an mi-convex model (2021) Symmetry, 13 (7). Cited 9 times. https://www.mdpi.com/2073-8994/13/7/1124/pdfLubin, M., Yamangil, E., Bent, R., Vielma, J.P. Polyhedral approximation in mixed-integer convex optimization (Open Access) (2018) Mathematical Programming, 172 (1-2), pp. 139-168. Cited 29 times. http://www.springerlink.com/ doi: 10.1007/s10107-017-1191-yMarini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Montoya, O.D., Medina-Quesada, Á., Hernández, J.C. Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers (Open Access) (2022) Electronics (Switzerland), 11 (13), art. no. 2034. Cited 5 times. https://www.mdpi.com/2079-9292/11/13/2034/pdf?version=1656469417 doi: 10.3390/electronics11132034Montoya, O.D., Alarcon-Villamil, J.A., Hernández, J.C. Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses (Open Access) (2021) Energies, 14 (15), art. no. 4535. Cited 10 times. https://www.mdpi.com/1996-1073/14/15/4535/pdf doi: 10.3390/en14154535Montoya, O.D., Gil-González, W., Grisales-Norena, L., Orozco-Henao, C., Serra, F. Economic sispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models (2019) Energies, 12 (23), art. no. 4494. Cited 32 times. https://www.mdpi.com/1996-1073/12/23 doi: 10.3390/en12234494http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2590123022003590-main.pdf1-s2.0-S2590123022003590-main.pdfapplication/pdf900859https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/1/1-s2.0-S2590123022003590-main.pdfed170c02a39fb3298a0f4bfbc42353e0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2590123022003590-main.pdf.txt1-s2.0-S2590123022003590-main.pdf.txtExtracted texttext/plain48173https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/4/1-s2.0-S2590123022003590-main.pdf.txt6034b41b52a779f529088cddfe676380MD54THUMBNAIL1-s2.0-S2590123022003590-main.pdf.jpg1-s2.0-S2590123022003590-main.pdf.jpgGenerated Thumbnailimage/jpeg8594https://repositorio.utb.edu.co/bitstream/20.500.12585/12102/5/1-s2.0-S2590123022003590-main.pdf.jpg4d78303c2a4acdb5d1e9871346b77183MD5520.500.12585/12102oai:repositorio.utb.edu.co:20.500.12585/121022023-07-15 00:17:29.775Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |