Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers

Bipolar direct current (DC) networks are emerging electrical systems used to improve the distribution capabilities of monopolar DC networks. These grids work with positive, negative, and neutral poles, and they can transport two times the power when compared to monopolar DC grids. The distinctive fe...

Full description

Autores:
Montoya, Oscar Danilo
Medina-Quesada, Ángeles
Hernández, Jesus C.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12409
Acceso en línea:
https://hdl.handle.net/20.500.12585/12409
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_bb85a9f4a6b9aa646d4537b2977a45b6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12409
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
title Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
spellingShingle Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
title_full Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
title_fullStr Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
title_full_unstemmed Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
title_sort Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
dc.creator.fl_str_mv Montoya, Oscar Danilo
Medina-Quesada, Ángeles
Hernández, Jesus C.
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Medina-Quesada, Ángeles
Hernández, Jesus C.
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Bipolar direct current (DC) networks are emerging electrical systems used to improve the distribution capabilities of monopolar DC networks. These grids work with positive, negative, and neutral poles, and they can transport two times the power when compared to monopolar DC grids. The distinctive features of bipolar DC grids include the ability to deal with bipolar loads (loads connected between the positive and negative poles) and with unbalanced load conditions, given that the loads connected to the positive and neutral poles are not necessarily equal to the negative and neutral ones. This load imbalance deteriorates voltages when compared to positive and negative poles, and it causes additional power losses in comparison with balanced operation scenarios. This research addresses the problem of pole-swapping in bipolar DC networks using combinatorial optimization methods in order to reduce the total grid power losses and improve the voltage profiles. Bipolar DC networks with a non-solidly grounded neutral wire composed of 21 and 85 nodes are considered in the numerical validations. The implemented combinatorial methods are the Chu and Beasley genetic algorithm, the sine-cosine algorithm, and the black-hole optimization algorithm. Numerical results in both test feeders demonstrate the positive effect of optimal pole-swapping in the total final power losses and the grid voltage profiles. All simulations were run in the MATLAB programming environment using the triangular-based power flow method, which is intended for radial distribution system configurations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-24T18:52:40Z
dc.date.available.none.fl_str_mv 2023-07-24T18:52:40Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12409
dc.identifier.doi.none.fl_str_mv 10.3390/electronics11132034
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12409
identifier_str_mv 10.3390/electronics11132034
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics (Switzerland)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/1/electronics-11-02034.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/4/electronics-11-02034.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/5/electronics-11-02034.pdf.jpg
bitstream.checksum.fl_str_mv 56097508267c705b8bc29e6b48876567
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
5fbb21ce053293146384fd500162b2f5
83abb74db186b254c6c6b408a7bc8c38
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021746828771328
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Medina-Quesada, Ángelesc4945c01-b7fc-40f7-af40-bc8515e102d8Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2023-07-24T18:52:40Z2023-07-24T18:52:40Z20222023https://hdl.handle.net/20.500.12585/1240910.3390/electronics11132034Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarBipolar direct current (DC) networks are emerging electrical systems used to improve the distribution capabilities of monopolar DC networks. These grids work with positive, negative, and neutral poles, and they can transport two times the power when compared to monopolar DC grids. The distinctive features of bipolar DC grids include the ability to deal with bipolar loads (loads connected between the positive and negative poles) and with unbalanced load conditions, given that the loads connected to the positive and neutral poles are not necessarily equal to the negative and neutral ones. This load imbalance deteriorates voltages when compared to positive and negative poles, and it causes additional power losses in comparison with balanced operation scenarios. This research addresses the problem of pole-swapping in bipolar DC networks using combinatorial optimization methods in order to reduce the total grid power losses and improve the voltage profiles. Bipolar DC networks with a non-solidly grounded neutral wire composed of 21 and 85 nodes are considered in the numerical validations. The implemented combinatorial methods are the Chu and Beasley genetic algorithm, the sine-cosine algorithm, and the black-hole optimization algorithm. Numerical results in both test feeders demonstrate the positive effect of optimal pole-swapping in the total final power losses and the grid voltage profiles. All simulations were run in the MATLAB programming environment using the triangular-based power flow method, which is intended for radial distribution system configurations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.17 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics (Switzerland)Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizersinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasGarcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4MacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522Guo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166Garces, A., Montoya, O.D., Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits (2022) IEEE Transactions on Power Systems, 37 (5), pp. 4098-4101. Cited 7 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3181851Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108357. Cited 10 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108357Li, B., Wang, W., Liu, Y., Li, B., Wen, W. Research on power flow calculation method of true bipolar VSC-HVDC grids with different operation modes and control strategies (Open Access) (2021) International Journal of Electrical Power and Energy Systems, Part A 126, art. no. 106558. Cited 18 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106558Tavakoli, S.D., Khajesalehi, J., Hamzeh, M., Sheshyekani, K. Decentralised voltage balancing in bipolar dc microgrids equipped with trans-z-source interlinking converter (Open Access) (2016) IET Renewable Power Generation, 10 (5), pp. 703-712. Cited 34 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2015.0222Liao, J., You, X., Liu, H., Huang, Y. Voltage stability improvement of a bipolar DC system connected with constant power loads (Open Access) (2021) Electric Power Systems Research, 201, art. no. 107508. Cited 8 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2021.107508Medina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914Lee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 24 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733Chew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817Acosta, C., Hincapié, R.A., Granada, M., Escobar, A.H., Gallego, R.A. An efficient three phase fourwire radial power flow including neutral-earth effect (2013) Journal of Control, Automation and Electrical Systems, 24 (5), pp. 690-701. Cited 9 times. doi: 10.1007/s40313-013-0049-7De Oliveira-De Jesus, P.M., Alvarez, M.A., Yusta, J.M. Distribution power flow method based on a real quasi-symmetric matrix (Open Access) (2013) Electric Power Systems Research, 95, pp. 148-159. Cited 35 times. doi: 10.1016/j.epsr.2012.08.011Albadr, M.A., Tiun, S., Ayob, M., Al-Dhief, F. Genetic algorithm based on natural selection theory for optimization problems (Open Access) (2020) Symmetry, 12 (11), art. no. 1758, pp. 1-31. Cited 53 times. https://www.mdpi.com/2073-8994/12/11/1758/pdf doi: 10.3390/sym12111758Yepes, V., Martí, J.V., García, J. Black hole algorithm for sustainable design of counterfort retaining walls (Open Access) (2020) Sustainability (Switzerland), 12 (7), art. no. 2767. Cited 32 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-02767/article_deploy/sustainability-12-02767.pdf doi: 10.3390/su12072767Attia, A.-F., El Sehiemy, R.A., Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (Open Access) (2018) International Journal of Electrical Power and Energy Systems, 99, pp. 331-343. Cited 257 times. doi: 10.1016/j.ijepes.2018.01.024Kumar, S., Datta, D., Kumar Singh, S., Azar, A.T., Vaidyanathan, S. Black hole algorithm and its applications (2015) Studies in Computational Intelligence, 575, pp. 147-170. Cited 38 times. http://www.springer.com/series/7092 doi: 10.1007/978-3-319-11017-2_7Arenas-Acuña, C.A., Rodriguez-Contreras, J.A., Montoya, O.D., Rivas-Trujillo, E. Black-hole optimization applied to the parametric estimation in distribution transformers considering voltage and current measures (2021) Computers, 10 (10), art. no. 124. Cited 10 times. https://www.mdpi.com/2073-431X/10/10/124/pdf doi: 10.3390/computers10100124Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Tamilselvan, V., Jayabarathi, T., Raghunathan, T., Yang, X.-S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm (2018) Alexandria Engineering Journal, 57 (4), pp. 2775-2786. Cited 90 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2018.01.004http://purl.org/coar/resource_type/c_6501ORIGINALelectronics-11-02034.pdfelectronics-11-02034.pdfapplication/pdf360582https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/1/electronics-11-02034.pdf56097508267c705b8bc29e6b48876567MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTelectronics-11-02034.pdf.txtelectronics-11-02034.pdf.txtExtracted texttext/plain51392https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/4/electronics-11-02034.pdf.txt5fbb21ce053293146384fd500162b2f5MD54THUMBNAILelectronics-11-02034.pdf.jpgelectronics-11-02034.pdf.jpgGenerated Thumbnailimage/jpeg7931https://repositorio.utb.edu.co/bitstream/20.500.12585/12409/5/electronics-11-02034.pdf.jpg83abb74db186b254c6c6b408a7bc8c38MD5520.500.12585/12409oai:repositorio.utb.edu.co:20.500.12585/124092023-07-25 00:17:48.726Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=